145 resultados para Elastic Proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classification of protein structures is an important and still outstanding problem. The purpose of this paper is threefold. First, we utilize a relation between the Tutte and homfly polynomial to show that the Alexander-Conway polynomial can be algorithmically computed for a given planar graph. Second, as special cases of planar graphs, we use polymer graphs of protein structures. More precisely, we use three building blocks of the three-dimensional protein structure-alpha-helix, antiparallel beta-sheet, and parallel beta-sheet-and calculate, for their corresponding polymer graphs, the Tutte polynomials analytically by providing recurrence equations for all three secondary structure elements. Third, we present numerical results comparing the results from our analytical calculations with the numerical results of our algorithm-not only to test consistency, but also to demonstrate that all assigned polynomials are unique labels of the secondary structure elements. This paves the way for an automatic classification of protein structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis. This study was designed to determine whether inhibition of formation of AGE and advanced lipoxidation end-products (ALE) is a mechanism of action common to a diverse group of therapeutic agents that limit the progress of diabetic nephropathy. We compared the effects of the ACE inhibitor enalapril, the antioxidant vitamin E, the thiol compound lipoic acid, and the AGE/ALE inhibitor pyridoxamine on the formation of AGE/ALE and protection against nephropathy in streptozotocin diabetic rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the origin of basal-like breast cancers, an aggressive disease that is highly similar to BRCA1-mutant breast cancers. p63 family proteins that are structurally related to the p53 suppressor protein are known to function in stem cell regulation and stratified epithelia development in multiple tissues, and p63 expression may be a marker of basal-like breast cancers. Here we report that Delta Np63 isoforms of p63 are transcriptional targets for positive regulation by BRCA1. Our analyses of breast cancer tissue microarrays and BRCA1-modulated breast cancer cell lines do not support earlier reports that p63 is a marker of basal-like or BRCA1 mutant cancers. Nevertheless, we found that BRCA1 interacts with the specific p63 isoform Delta Np63 gamma along with transcription factor isoforms AP-2 alpha and AP-2 gamma. BRCA1 required Delta Np63 gamma and AP-2 gamma to localize to an intronic enhancer region within the p63 gene to upregulate transcription of the Delta Np63 isoforms. In mammary stem/progenitor cells, siRNA- mediated knockdown of Delta Np63 expression resulted in genomic instability, increased cell proliferation, loss of DNA damage checkpoint control, and impaired growth control. Together, our findings establish that transcriptional upregulation of Delta Np63 proteins is critical for BRCA1 suppressor function and that defects in BRCA1-Delta Np63 signaling are key events in the pathogenesis of basal-like breast cancer. Cancer Res; 71( 5); 1933-44. (c) 2011 AACR.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A split-EGFP bimolecular fluorescence complementation assay was used to visualise and locate three interacting pairs of proteins from the GAL genetic switch of the budding yeast, Saccharomyces cerevisiae. Both the Gal4p-Gal80p and Gal80p-Gal3p pairs were found to be located in the nucleus under inducing conditions. However, the Gal80p-Gal1p complex was located throughout the cell. These results support recent work establishing an initial interaction between Gal3p and Gal80p occurring in the nucleus. Labelling of all three protein pairs impaired the growth of the yeast strains and resulted in reduced galactokinase activity in cell extracts. The most likely cause of this impairment is decreased dissociation rates of the complexes, caused by the essentially irreversible reassembly of the EGFP fragments. This suggests that a fully functional GAL genetic switch requires dynamic interactions between the protein components. These results also highlight the need for caution in the interpretation of in vivo split-EGFP experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In plasma membranes derived from bovine mesenteric lymphatic smooth muscle cells, guanine nucleotide and forskolin stimulated adenylyl cyclase (AC) activity in a concentration-dependent manner, indicative of the presence of the stimulatory G-protein G(s) linked to AC. There was no significant enzyme inhibition by low concentrations of guanine nucleotide and no effect on basal or guanine nucleotide-stimulated activity following pertussis toxin treatment of cells, suggesting the absence of G(1) linked to inhibition of AC. Furthermore, there was no effect of adrenaline, isoprenaline or clonidine on basal or forskolin-stimulated activities, nor was there any specific binding of the beta-adrenoceptor ligand [I-125]cyanopindolol to membranes, suggesting that cate-cholamine receptors do not modulate AC activity in these membranes. Pertussis toxin-mediated ADP ribosylation of membrane proteins and Western immunoblotting analysis revealed the presence of G-protein subunits G(alpha l2), G(alpha q), G(alpha 11) and G(beta 1). In experiments designed to identify a possible effector enzyme for these G-proteins, membranes were screened with a range of antibodies raised against phospholipase C (PLC) beta, gamma and delta isozymes. Though no evidence was obtained by Western blotting for any of these proteins, PLC activity was concentration-dependently stimulated by Ca2+, but not by AlF4-, GTP[S], or purified G(beta gamma) subunits. Finally, no specific binding to membranes of the alpha(1)-adrenoceptor ligand [H-3]prazosin or the alpha(2)-adrenoceptor ligand [H-3]yohimbine was obtained. In conclusion, this study provides evidence for a G(s)-dependent stimulation of AC, and for the presence of G(2) and G(q11), which do not appear to regulate a PLC activity also identified in lymphatic smooth muscle cell membranes. Furthermore, neither AC nor PLC appear to be associated with catecholamine receptors. Copyright(C) 1996 Elsevier Science Inc.