69 resultados para Detectors: scintillator
Resumo:
Aims: X-ray emission is an important diagnostics to study magnetic activity in very low mass stars that are presumably fully convective and have an effectively neutral photosphere. Methods: We investigate an XMM-Newton observation of SCR 1845-6357, a nearby, ultracool M 8.5 / T 5.5 dwarf binary. The binary is unresolved in the XMM detectors, but the X-ray emission is very likely from the M 8.5 dwarf. We compare its flaring emission to those of similar very low mass stars and additionally present an XMM observation of the M 8 dwarf VB 10. Results: We detect quasi-quiescent X-ray emission from SCR 1845-6357 at soft X-ray energies in the 0.2-2.0 keV band, as well as a strong flare with a count rate increase of a factor of 30 and a duration of only 10 min. The quasi-quiescent X-ray luminosity of log LX = 26.2 erg/s and the corresponding activity level of log LX/Lbol = -3.8 point to a fairly active star. Coronal temperatures of up to 5 MK and frequent minor variability support this picture. During the flare, which is accompanied by a significant brightening in the near-UV, plasma temperatures of 25-30 MK are observed and an X-ray luminosity of LX = 8 × 1027 erg/s is reached. Conclusions: The source SCR 1845-6357 is a nearby, very low mass star that emits X-rays at detectable levels in quasi-quiescence, implying the existence of a corona. The high activity level, coronal temperatures and the observed large flare point to a rather active star, despite its estimated age of a few Gyr.
Resumo:
We observed 51 Peg, the first detected planet-bearing star, in a 55 ks XMM-Newton pointing and in 5 ks pointings each with Chandra HRC-I and ACIS-S. The star has a very low count rate in the XMM observation, but is clearly visible in the Chandra images due to the detectors' different sensitivity at low X-ray energies. This allows a temperature estimate for 51 Peg's corona of T⪉ 1 MK; the detected ACIS-S photons can be plausibly explained by emission lines of a very cool plasma near 200 eV. The constantly low X-ray surface flux and the flat-activity profile seen in optical Ca II data suggest that 51 Peg is a Maunder minimum star; an activity enhancement due to a Hot Jupiter, as proposed by recent studies, seems to be absent. The star's X-ray fluxes in different instruments are consistent with the exception of the HRC Imager, which might have a larger effective area below 200 eV than given in the calibration.
Resumo:
X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field.
Resumo:
The increasing scale of Multiple-Input Multiple- Output (MIMO) topologies employed in forthcoming wireless communications standards presents a substantial implementation challenge to designers of embedded baseband signal processing architectures for MIMO transceivers. Specifically the increased scale of such systems has a substantial impact on the perfor- mance/cost balance of detection algorithms for these systems. Whilst in small-scale systems Sphere Decoding (SD) algorithms offer the best quasi-ML performance/cost balance, in larger systems heuristic detectors, such Tabu-Search (TS) detectors are superior. This paper addresses a dearth of research in architectures for TS-based MIMO detection, presenting the first known realisations of TS detectors for 4 × 4 and 10 × 10 MIMO systems. To the best of the authors’ knowledge, these are the largest single-chip detectors on record.
Resumo:
At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.
Resumo:
γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy.
However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved.
Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 1020 photons s−1mm−2mrad−2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.
Resumo:
Since 1999, the rapid, inexpensive and non-destructive use of Th/K and Th/U ratios from spectral gamma ray measurements have been used as a proxy for changes in palaeo-hinterland weathering. This model is tested here by analysis of in situ palaeoweathering horizons where clay mineral contents are well-known. A residual palaeoweathered horizon of Palaeogene laterite (developed on basalt) has been logged at 14 locations across N. Ireland using spectral gamma ray detectors. The results are compared to published elemental and mineralogical data. While the model of K and U loss during the early stages of weathering to smectite and kaolinite is supported, the formation (during progressively more advanced weathering) of gibbsite and iron oxides has reversed the predicted pattern and caused U and Th retention in the weathering profile. The severity (duration, humidity) of weathering and palaeoweathering may be estimated using Th/K ratios as a proxy. The use of Th/U ratios is more problematic should detrital gibbsite (or similar clays) or iron oxides be detected. Mineralogical analysis is needed in order to evaluate the hosts for K, U and Th: nonetheless, the spectral gamma ray machine offers a real-time, inexpensive and effective tool for the preliminary or conjunctive assessment of degrees of weathering or palaeoweathering.
Resumo:
The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a ‘self’ proton probing arrangement – i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.