75 resultados para Biological nitrification
Resumo:
The need for chemical and biological entities of predetermined selectivity and affinity towards target analytes is greater than ever, in applications such as environmental monitoring, bioterrorism detection and analysis of natural toxin contaminants in the food chain.
Resumo:
Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis.
Resumo:
In this paper we discuss the dualism of gene networks and their role in systems biology. We argue that gene networks ( 1) can serve as a conceptual framework, forming a fundamental level of a phenomenological description, and ( 2) are a means to represent and analyze data. The latter point does not only allow a systems analysis but is even amenable for a direct approach to study biological function. Here we focus on the clarity of our main arguments and conceptual meaning of gene networks, rather than the causal inference of gene networks from data. (C) 2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 379-391 DOI: 10.1002/wsbm.134
Resumo:
Agricultural intensification can affect biodiversity and related ecosystem services such as biological control, but large-scale experimental evidence is missing. We examined aphid pest populations in cereal fields under experimentally reduced densities of (1) ground-dwelling predators (-G), (2) vegetation-dwelling predators and parasitoids (-V), (3) a combination of (1) and (2) (-G-V),compared with open-fields (control), in contrasting landscapes with low vs. high levels of agricultural intensification (AI), and in five European regions. Aphid populations were 28%, 97%, and 199% higher in -G, -V, and -G -V treatments, respectively, compared to the open fields, indicating synergistic effects of both natural-enemy groups. Enhanced parasitoid : host and predator : prey ratios were related to reduced aphid population density and population growth. The relative importance of parasitoids and vegetation-dwelling predators greatly differed among European regions, and agricultural intensification affected biological control and aphid density only in some regions. This shows a changing role of species group identity in diverse enemy communities and a need to consider region-specific landscape management.
Resumo:
During the last 50 years, agricultural intensification has caused many wild plant and animal species to go extinct regionally or nationally and has profoundly changed the functioning of agro-ecosystems. Agricultural intensification has many components, such as loss of landscape elements, enlarged farm and field sizes and larger inputs of fertilizer and pesticides. However, very little is known about the relative contribution of these variables to the large-scale negative effects on biodiversity. In this study, we disentangled the impacts of various components of agricultural intensification on species diversity of wild plants, carabids and ground-nesting farmland birds and on the biological control of aphids.
Resumo:
Aim: To characterize and map temporal changes in the biological and clinical phenotype during a 21-day experimental gingivitis study. Materials and Methods: Experimental gingivitis was induced over 21 days in healthy human volunteers (n = 56), after which normal brushing was resumed (resolution phase). Gingival and plaque indices were assessed. Gingival crevicular fluid was collected from four paired test and contra-lateral control sites in each volunteer during induction (Days 0, 7, 14 and 21) and resolution (Days 28 and 42) of experimental gingivitis. Fluid volumes were measured and a single analyte was quantified from each site-specific, 30s sample. Data were evaluated by analysis of repeated measurements and paired sample tests. Results: Clinical indices and gingival crevicular fluid volumes at test sites increased from Day 0, peaking at Day 21 (test/control differences all p
Resumo:
Background: Co-localisation is a widely used measurement in immunohistochemical analysis to determine if fluorescently labelled biological entities, such as cells, proteins or molecules share a same location. However the measurement of co-localisation is challenging due to the complex nature of such fluorescent images, especially when multiple focal planes are captured. The current state-of-art co-localisation measurements of 3-dimensional (3D) image stacks are biased by noise and cross-overs from non-consecutive planes.
Method: In this study, we have developed Co-localisation Intensity Coefficients (CICs) and Co-localisation Binary Coefficients (CBCs), which uses rich z-stack data from neighbouring focal planes to identify similarities between image intensities of two and potentially more fluorescently-labelled biological entities. This was developed using z-stack images from murine organotypic slice cultures from central nervous system tissue, and two sets of pseudo-data. A large amount of non-specific cross-over situations are excluded using this method. This proposed method is also proven to be robust in recognising co-localisations even when images are polluted with a range of noises.
Results: The proposed CBCs and CICs produce robust co-localisation measurements which are easy to interpret, resilient to noise and capable of removing a large amount of false positivity, such as non-specific cross-overs. Performance of this method of measurement is significantly more accurate than existing measurements, as determined statistically using pseudo datasets of known values. This method provides an important and reliable tool for fluorescent 3D neurobiological studies, and will benefit other biological studies which measure fluorescence co-localisation in 3D.