80 resultados para Array Signal Processing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Real time digital signal processing demands high performance implementations of division and square root. This can only be achieved by the design of fast and efficient arithmetic algorithms which address practical VLSI architectural design issues. In this paper, new algorithms for division and square root are described. The new schemes are based on pre-scaling the operands and modifying the classical SRT method such that the result digits and the remainders are computed concurrently and the computations in adjacent rows are overlapped. Consequently, their performance exceeds that of the SRT methods. The hardware cost for higher radices is considerably more than that of the SRT methods but for many applications, this is not prohibitive. A system of equations is presented which enables both an analysis of the method for any radix and the parameters of implementations to be easily determined. This is illustrated for the case of radix 2 and radix 4. In addition, a highly regular array architecture combining the division and square root method is described. © 1994 Kluwer Academic Publishers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The design of a generic QR core for adaptive beamforming is presented. The work relies on an existing mapping technique that can be applied to a triangular QR array in such a way to allow the generation of a range of QR architectures. All scheduling of data inputs and retiming to include processor latency has been included within the generic representation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An overview is given of a systolic VLSI compiler (SVC) tool currently under development for the automated design of high performance digital signal processing (DSP) chips. Attention is focused on the design of systolic vector quantization chips for use in both speech and image coding systems. The software in question consists of a cell library, silicon assemblers, simulators, test pattern generators, and a specially designed graphics shell interface which makes it expandable and user friendly. It allows very high performance digital coding systems to be rapidly designed in VLSI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In real time digital signal processing, high performance modules for division and square root are essential if many powerful algorithms are to be implemented. In this paper, a new radix 2 algorithms for SRT division and square root are developed. For these new schemes, the result digits and the residuals are computed concurrently and the computations in adjacent rows are overlapped. Consequently, their performance should exceed that of the radix 2 SRT methods. VLSI array architectures to implement the new division and square root schemes are also presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Details are presented of the IRIS synthesis system for high-performance digital signal processing. This tool allows non-specialists to automatically derive VLSI circuit architectures from high-level, algorithmic representations, and provides a quick route to silicon implementation. The applicability of the system is demonstrated using the design example of a one-dimensional Discrete Cosine Transform circuit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the design of a single chip adaptive beamformer which contains 5 million transistors and can perform 50 GigaFlops. The core processor of the adaptive beamformer is a QR-array processor implemented on a fully efficient linear systolic architecture. The paper highlights a number of rapid design techniques that have been used to realize the design. These include an architecture synthesis tool for quickly developing the circuit architecture and the utilization of a library of parameterizable silicon intellectual property (IP) cores, to rapidly develop the circuit layouts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we examine a novel approach to network security against passive eavesdroppers in a ray-tracing model and implement it on a hardware platform. By configuring antenna array beam patterns to transmit the data to specific regions, it is possible to create defined regions of coverage for targeted users. By adapting the antenna configuration according to the intended user’s channel state information, this allows the vulnerability of the physical regions to eavesdropping to be reduced. We present the application of our concept to 802.11n networks where an antenna array is employed at the access point. A range of antenna array configurations are examined by simulation and then realized using the Wireless Open-Access Research Platform(WARP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power dissipation and tolerance to process variations pose conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor up-sizing for process tolerance can be detrimental for power dissipation. However, for certain signal processing systems such as those used in color image processing, we noted that effective trade-offs can be achieved between Vdd scaling, process tolerance and "output quality". In this paper we demonstrate how these tradeoffs can be effectively utilized in the development of novel low-power variation tolerant architectures for color interpolation. The proposed architecture supports a graceful degradation in the PSNR (Peak Signal to Noise Ratio) under aggressive voltage scaling as well as extreme process variations in. sub-70nm technologies. This is achieved by exploiting the fact that some computations are more important and contribute more to the PSNR improvement compared to the others. The computations are mapped to the hardware in such a way that only the less important computations are affected by Vdd-scaling and process variations. Simulation results show that even at a scaled voltage of 60% of nominal Vdd value, our design provides reasonable image PSNR with 69% power savings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on the investigations of spin wave modes in arrays of densely packed Co nanorods using Brillouin light scattering. We have observed a significant role of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical-analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in the metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic metamaterials are important class of active metamaterials needed for prospective data storage and signal processing applications. (c) 2012 Optical Society of America

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the investigations of spin wave modes of arrays of Ni and Co nanorods using Brillouin light scattering. We have revealed the significant influence of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical-analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in nanorod metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic artificial materials are important class of active metamaterials needed for prospective data storage and signal processing applications. © 2012 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With security and surveillance, there is an increasing need to be able to process image data efficiently and effectively either at source or in a large data networks. Whilst Field Programmable Gate Arrays have been seen as a key technology for enabling this, they typically use high level and/or hardware description language synthesis approaches; this provides a major disadvantage in terms of the time needed to design or program them and to verify correct operation; it considerably reduces the programmability capability of any technique based on this technology. The work here proposes a different approach of using optimised soft-core processors which can be programmed in software. In particular, the paper proposes a design tool chain for programming such processors that uses the CAL Actor Language as a starting point for describing an image processing algorithm and targets its implementation to these custom designed, soft-core processors on FPGA. The main purpose is to exploit the task and data parallelism in order to achieve the same parallelism as a previous HDL implementation but avoiding the design time, verification and debugging steps associated with such approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distributed massive multiple-input multiple-output (MIMO) combines the array gain of coherent MIMO processing with the proximity gains of distributed antenna setups. In this paper, we analyze how transceiver hardware impairments affect the downlink with maximum ratio transmission. We derive closed-form spectral efficiencies expressions and study their asymptotic behavior as the number of the antennas increases. We prove a scaling law on the hardware quality, which reveals that massive MIMO is resilient to additive distortions, while multiplicative phase noise is a limiting factor. It is also better to have separate oscillators at each antenna than one per BS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a multi-pair two-way amplify-and-forward relaying system with a massive antenna array at the relay and estimated channel state information, assuming maximum-ratio combining/transmission processing. Closed-form approximations of the sum spectral effi- ciency are developed and simple analytical power scaling laws are presented, which reveal a fundamental trade-off between the transmit powers of each user/the relay and of each pilot symbol. Finally, the optimal power allocation problem is studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Software-programmable `soft' processors have shown tremendous potential for efficient realisation of high performance signal processing operations on Field Programmable Gate Array (FPGA), whilst lowering the design burden by avoiding the need to design fine-grained custom circuit archi-tectures. However, the complex data access patterns, high memory bandwidth and computational requirements of sliding window applications, such as Motion Estimation (ME) and Matrix Multiplication (MM), lead to low performance, inefficient soft processor realisations. This paper resolves this issue, showing how by adding support for block data addressing and accelerators for high performance loop execution, performance and resource efficiency over four times better than current best-in-class metrics can be achieved. In addition, it demonstrates the first recorded real-time soft ME estimation realisation for H.263 systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Field programmable gate array (FPGA) technology is a powerful platform for implementing computationally complex, digital signal processing (DSP) systems. Applications that are multi-modal, however, are designed for worse case conditions. In this paper, genetic sequencing techniques are applied to give a more sophisticated decomposition of the algorithmic variations, thus allowing an unified hardware architecture which gives a 10-25% area saving and 15% power saving for a digital radar receiver.