81 resultados para Age, relative, number of years
Resumo:
Multiuser diversity gain has been investigated well in terms of a system capacity formulation in the literature. In practice, however, designs on multiuser systems with nonzero error rates require a relationship between the error rates and the number of users within a cell. Considering a best-user scheduling, where the user with the best channel condition is scheduled to transmit per scheduling interval, our focus is on the uplink. We assume that each user communicates with the base station through a single-input multiple-output channel. We derive a closed-form expression for the average BER, and analyze how the average BER goes to zero asymptotically as the number of users increases for a given SNR. Note that the analysis of average BER even in SI SO multiuser diversity systems has not been done with respect to the number of users for a given SNR. Our analysis can be applied to multiuser diversity systems with any number of antennas.
Resumo:
We analyze the production of defects during the dynamical crossing of a mean-field phase transition with a real order parameter. When the parameter that brings the system across the critical point changes in time according to a power-law schedule, we recover the predictions dictated by the well-known Kibble-Zurek theory. For a fixed duration of the evolution, we show that the average number of defects can be drastically reduced for a very large but finite system, by optimizing the time dependence of the driving using optimal control techniques. Furthermore, the optimized protocol is robust against small fluctuations.
Resumo:
Intraspecific variation in gamete compatibility among male/female pairs causes variation in the concentration of sperm required to achieve equivalent fertilization levels. Gamete compatibility is therefore potentially an important factor controlling mating success. Many broadcast-spawning marine invertebrates, however, also live in a dynamic environment where hydrodynamic conditions can affect the concentration of sperm reaching eggs during spawning. Thus flow conditions may moderate the effects of gamete compatibility on fertilization. Using the green sea urchin Strongylocentrotus droebachiensis as a model system, we assessed the relative effects of gamete compatibility (the concentration of sperm required to fertilize 50% of the eggs in specific male/female pairs; F50) and the root-mean-square of total velocity (urms; 0.01-0.11 m s(-1)) on fertilization in four locations near a spawning female (water column, wake eddy, substratum, and aboral surface) in both unidirectional and oscillatory flows. Percent fertilization decreased significantly with increasing urms at all locations and both flow regimes. However, although gamete compatibility varied by almost 1.5 orders of magnitude, it was not a significant predictor of fertilization for most combinations of position and flow. The notable exception was a significant effect of gamete compatibility on fertilization on the aboral surface under unidirectional flow. Our results suggest that selection on variation in gamete compatibility may be strongest in eggs fertilized on the aboral surface of sea urchins and that hydrodynamic conditions may add environmental noise to selection outcomes.
Resumo:
Disease-, age-, and gender-associated changes in brain copper, iron, and zinc were assessed in postmortem neocortical tissue (Brodmann area 7) from patients with moderate Alzheimer's disease (AD) (n = 14), severe AD (n = 28), dementia with Lewy bodies (n = 15), and normal age-matched control subjects (n = 26). Copper was lower (20%; p < 0.001) and iron higher (10–16%; p < 0.001) in severe AD compared with controls. Intriguingly significant Group*Age interactions were observed for both copper and iron, suggesting gradual age-associated decline of these metals in healthy non-cognitively impaired individuals. Zinc was unaffected in any disease pathologies and no age-associated changes were apparent. Age-associated changes in brain elements warrant further investigation.
Resumo:
Scleroderma is a connective tissue disorder that can present with orofacial involvement. A 48 year-old patient presented to Cork University Dental Hospital with concerns about the appearance of her upper central incisor teeth, which had become progressively mobile in recent years. A diagnosis of localised scleroderma had been made a number of years previously by her medical practitioner and the patient reported that her scleroderma-associated microstomia had progressed significantly in recent years. Most reports of this condition advocate the use of sectional impression trays and sectional dentures to replace missing teeth. This report describes the use of resin-bonded bridgework (RBB) and discusses the possible advantages of this treatment option over those already presented in the literature.
Resumo:
Energy consumption has become an important area of research of late. With the advent of new manycore processors, situations have arisen where not all the processors need to be active to reach an optimal relation between performance and energy usage. In this paper a study of the power and energy usage of a series of benchmarks, the PARSEC and the SPLASH- 2X Benchmark Suites, on the Intel Xeon Phi for different threads configurations, is presented. To carry out this study, a tool was designed to monitor and record the power usage in real time during execution time and afterwards to compare the r
Resumo:
Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.
Resumo:
Nontypeable Haemophilus influenzae (NTHi) is a frequent commensal of the human nasopharynx that causes opportunistic infection in immunocompromised individuals. Existing evidence associates lipooligosaccharide (LOS) with disease, but the specific and relative contributions of NTHi LOS modifications to virulence properties of the bacterium have not been comprehensively addressed. Using NTHi strain 375, an isolate for which the detailed LOS structure has been determined, we compared systematically a set of isogenic mutant strains expressing sequentially truncated LOS. The relative contributions of 2-keto-3-deoxyoctulosonic acid, the triheptose inner core, oligosaccharide extensions on heptoses I and III, phosphorylcholine, digalactose, and sialic acid to NTHi resistance to antimicrobial peptides (AMP), self-aggregation, biofilm formation, cultured human respiratory epithelial infection, and murine pulmonary infection were assessed. We show that opsX, lgtF, lpsA, lic1, and lic2A contribute to bacterial resistance to AMP; lic1 is related to NTHi self-aggregation; lgtF, lic1, and siaB are involved in biofilm growth; opsX and lgtF participate in epithelial infection; and opsX, lgtF, and lpsA contribute to lung infection. Depending on the phenotype, the involvement of these LOS modifications occurs at different extents, independently or having an additive effect in combination. We discuss the relative contribution of LOS epitopes to NTHi virulence and frame a range of pathogenic traits in the context of infection.
Resumo:
Distributed massive multiple-input multiple-output (MIMO) combines the array gain of coherent MIMO processing with the proximity gains of distributed antenna setups. In this paper, we analyze how transceiver hardware impairments affect the downlink with maximum ratio transmission. We derive closed-form spectral efficiencies expressions and study their asymptotic behavior as the number of the antennas increases. We prove a scaling law on the hardware quality, which reveals that massive MIMO is resilient to additive distortions, while multiplicative phase noise is a limiting factor. It is also better to have separate oscillators at each antenna than one per BS.
Resumo:
High levels of genetic diversity and high propagule pressure are favoured by conservation biologists as the basis for successful reintroductions and ensuring the persistence of populations. However, invasion ecologists recognize the ‘paradox of invasion’, as successful species introductions may often be characterized by limited numbers of individuals and associated genetic bottlenecks. In the present study, we used a combination of high-resolution nuclear and mitochondrial genetic markers to investigate the invasion history of Reeves' muntjac deer in the British Isles. This invasion has caused severe economic and ecological damage, with secondary spread currently a concern throughout Europe and potentially globally. Microsatellite analysis based on eight loci grouped all 176 introduced individuals studied from across the species' range in the UK into one genetic cluster, and seven mitochondrial D-loop haplotypes were recovered, two of which were present at very low frequency and were related to more common haplotypes. Our results indicate that the entire invasion can be traced to a single founding event involving a low number of females. These findings highlight the fact that even small releases of species may, if ignored, result in irreversible and costly invasion, regardless of initial genetic diversity or continual genetic influx.