99 resultados para 160 Logic
Resumo:
This paper is a contribution to Mathematical fuzzy logic, in particular to the algebraic study of t-norm based fuzzy logics. In the general framework of propositional core and ?-core fuzzy logics we consider three properties of completeness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations of these completeness properties are obtained and their relations are studied. Moreover, we concentrate on five kinds of distinguished semantics for these logics-namely the class of algebras defined over the real unit interval, the rational unit interval, the hyperreals (all ultrapowers of the real unit interval), the strict hyperreals (only ultrapowers giving a proper extension of the real unit interval) and finite chains, respectively-and we survey the known completeness methods and results for prominent logics. We also obtain new interesting relations between the real, rational and (strict) hyperreal semantics, and good characterizations for the completeness with respect to the semantics of finite chains. Finally, all completeness properties and distinguished semantics are also considered for the first-order versions of the logics where a number of new results are proved. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Belief merging is an important but difficult problem in Artificial Intelligence, especially when sources of information are pervaded with uncertainty. Many merging operators have been proposed to deal with this problem in possibilistic logic, a weighted logic which is powerful for handling inconsistency and deal-ing with uncertainty. They often result in a possibilistic knowledge base which is a set of weighted formulas. Although possibilistic logic is inconsistency tolerant, it suffers from the well-known "drowning effect". Therefore, we may still want to obtain a consistent possibilistic knowledge base as the result of merging. In such a case, we argue that it is not always necessary to keep weighted information after merging. In this paper, we define a merging operator that maps a set of possibilistic knowledge bases and a formula representing the integrity constraints to a classical knowledge base by using lexicographic ordering. We show that it satisfies nine postulates that generalize basic postulates for propositional merging given in [11]. These postulates capture the principle of minimal change in some sense. We then provide an algorithm for generating the resulting knowledge base of our merging operator. Finally, we discuss the compatibility of our merging operator with propositional merging and establish the advantage of our merging operator over existing semantic merging operators in the propositional case.
Resumo:
Several logic gates and switches can be accessed from two different combinations of a single set of fluorophore, receptor and spacer components.
Resumo:
Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates that use specific conformation modulation of a guanine- and thymine- rich DNA, while the optical readout is enabled by the tunable alphabetical metamaterials, which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). By computational and experimental investigations, we present a comprehensive solution to tailor the plasmonic responses of MetaSERS with respect to the metamaterial geometry, excitation energy, and polarization. Our tunable MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions.
Resumo:
Foucault identified the roots of governmentality in religious beliefs and religious history with its genealogical core the equivalent of pastoral power, the art of governing people by relying on a dualistic logic; individualization and totalization. This technology of power arose and matured within the Roman Catholic Church and provided a model for many states in the achievement and exercise of power. Informed by the work of Foucault on pastoral power the present work examines the genealogical core of governmentality in the context of the Roman Catholic Church at a time of great crisis in the 15th century when the Roman Catholic Church was undergoing reform instituted by Pope Eugenius IV (1431-1447). The contributions of accounting to pastoral power are shown in this study to have been pivotal in restoring the Church’s standing and influence. Accounting was one of the technologies that allowed the bishops to control both the diocese as a whole and each priest, to subjugate the priests to the bishops’ authority and, thereby, to govern the diocese through a never-ending extraction of truth.
Resumo:
Currently there is extensive theoretical work on inconsistencies in logic-based systems. Recently, algorithms for identifying inconsistent clauses in a single conjunctive formula have demonstrated that practical application of this work is possible. However, these algorithms have not been extended for full knowledge base systems and have not been applied to real-world knowledge. To address these issues, we propose a new algorithm for finding the inconsistencies in a knowledge base using existing algorithms for finding inconsistent clauses in a formula. An implementation of this algorithm is then presented as an automated tool for finding inconsistencies in a knowledge base and measuring the inconsistency of formulae. Finally, we look at a case study of a network security rule set for exploit detection (QRadar) and suggest how these automated tools can be applied.
Resumo:
In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing "just-the-right" amount of quality and robustness. This is achieved, by taking into consideration block level interactions and ensuring that under any change of operating conditions, only the "less-crucial" computations, that contribute less to block/system output quality, are affected. The proposed approach applies unequal error protection to various blocks of a system-logic and memory-and spans multiple layers of design hierarchy-algorithm, architecture and circuit. The design methodology when applied to a multimedia subsystem shows large power benefits ( up to 69% improvement in power consumption) at reasonable image quality while tolerating errors introduced due to VOS, process variations, and channel noise.
Resumo:
On 26 December 2003 an Israeli activist was shot by the Israeli Army while he was participating in a demonstration organized by Anarchists Against the Wall (AAtW) in the West Bank. This was the first time Israeli Soldiers have deliberately shot live bullets at a Jewish-Israeli activist. This paper is an attempt to understand the set of conditions, the enveloping frameworks, and the new discourses that have made this event, and similar shootings that soon followed, possible. Situating the actions of AAtW within a much wider context of securitization—of identities, movements, and bodies—we examine strategies of resistance which are deployed in highly securitized public spaces. We claim that an unexpected matrix of identity in which abnormality is configured as security threat render the bodies of activists especially precarious. The paper thus provides an account of the new rationales of security technologies and tactics which increasingly govern public spaces.
Resumo:
Molecular logic-based computation is a broad umbrella covering molecular sensors at its simplest level and logic gate arrays involving steadily increasing levels of parallel and serial integration. The fluorescent PET(photoinduced electron transfer) switching principle remains a loyal servant of this entire field. Applications arise from the convenient operation of molecular information processors in very small spaces.
Resumo:
Genetically-engineered bacteria and reactive DNA networks detect edges of objects, as done in our retinas and as also found within computer vision. We now demonstrate that simple molecular logic systems (a combination of a pH sensor, a photo acid generator and a pH buffer spread on paper) without any organization can achieve this relatively complex computational goal with good-fidelity. This causes a jump in the complexity achievable by molecular logic-based computation and extends its applicability. The molecular species involved in light dose-driven 'off-on-off' fluorescence is diverted in the ‘on’ state by proton diffusion from irradiated to unirradiated regions where it escapes a strong quencher, thus visualizing the edge of a mask.
Resumo:
We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments.
Resumo:
This paper investigates probabilistic logics endowed with independence relations. We review propositional probabilistic languages without and with independence. We then consider graph-theoretic representations for propositional probabilistic logic with independence; complexity is analyzed, algorithms are derived, and examples are discussed. Finally, we examine a restricted first-order probabilistic logic that generalizes relational Bayesian networks.