88 resultados para silver nanoparticle
Resumo:
The unique properties of nanomaterials, in particular gold nanoparticles (GNPs) have applications for a wide range of biomedical applications. GNPs have been proposed as novel radiosensitizing agents due to their strong photoelectric absorption coefficient. Experimental evidence supporting the application of GNPs as radiosensitizing agents has been provided from extensive in vitro investigation and a relatively limited number of in vivo studies. Whilst these studies provide experimental evidence for the use of GNPs in combination with ionising radiation, there is an apparent disparity between the observed experimental findings and the level of radiosensitization predicted by mass energy absorption and GNP concentration. This review summarises experimental findings and attempts to highlight potential underlying biological mechanisms of response in GNP radiosensitization.
Resumo:
The effect of applied magnetic fields on the collective nonequilibrium dynamics of a strongly interacting Fe-C nanoparticle system has been investigated. It is experimentally shown that the magnetic aging diminishes to finally disappear for fields of moderate strength. The field needed to remove the observable aging behavior increases with decreasing temperature. The same qualitative behavior is observed in an amorphous metallic spin glass (Fe0.15Ni0.85)(75)P16B6Al3.
Resumo:
We demonstrate a novel way to actively tune surface plasmons by fabricating plasmonic nanostructures on stretchable elastomeric films. This allows reversible modification of the metal geometry on the nanometer scale. Using 100 nm scale Au nanoparticle dimers whose spacing is stretch-tuned reveals radically different spectral tuning than previously reported for sub-10-nm nanoparticles, but which can be explained by a revised interpretation of existing models. Tuning plasmons in this way offers a much more robust way than lithography to interrogate the physics of localized plasmons and has applications in optimized surface-enhanced luminescence and Raman scattering.
Resumo:
Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (X10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.
Resumo:
Close-packed monolayers of 20 nm Au nanoparticles are self-assembled at hexane/water interfaces and transferred to elastic substrates. Stretching the resulting nanoparticle mats provides active and reversible tuning of their plasmonic properties, with a clear polarization dependance. Both uniaxial and biaxial strains induce strong blue shifts in the plasmonic resonances. This matches theoretical simulations and indicates that plasmonic coupling at nanometer scale distances is responsible for the observed spectral tuning. Such stretch-tunable metal nanoparticle mats can be exploited for the development of optical devices, such as flexible colour filters and molecular sensors. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683535]
Resumo:
Aggregation of gold nanoparticles with rigid cucurbit[5]uril molecules generates fixed inter-particle separations of 0.91 nm. These nanoparticle assemblies possess discrete plasmonic modes which elucidate nanoscale growth and serve as molecular-recognition based SERS substrates.
Resumo:
Cucurbit[n]urils (CB[n]) are macrocyclic host molecules with subnanometer dimensions capable of binding to gold surfaces. Aggregation of gold nanoparticles with CB[n] produces a repeatable, fixed, and rigid interparticle separation of 0.9 nm, and thus such assemblies possess distinct and exquisitely sensitive plasmonics. Understanding the plasmonic evolution is key to their use as powerful SERS substrates. Furthermore, this unique spatial control permits fast nanoscale probing of the plasmonics of the aggregates "glued" together by CBs within different kinetic regimes using simultaneous extinction and SERS measurements. The kinetic rates determine the topology of the aggregates including the constituent structural motifs and allow the identification of discrete plasmon modes which are attributed to disordered chains of increasing lengths by theoretical simulations. The CBs directly report the near-field strength of the nanojunctions they create via their own SERS, allowing calibration of the enhancement. Owing to the unique barrel-shaped geometry of CB[n] and their ability to bind "guest" molecules, the aggregates afford a new type of in situ self-calibrated and reliable SERS substrate where molecules can be selectively trapped by the CB[n] and exposed to the nanojunction plasmonic field. Using this concept, a powerful molecular-recognition-based SERS assay is demonstrated by selective cucurbit[n]uril host-guest complexation.
Resumo:
We have developed a series of 1-alkyl-3-methylimidazolium tetrachlorocuprate(II) and dibromoargentate(I) ionic liquids with enhanced antimicrobial activity when compared with 1-alkyl-3-methylimidazolium chloride ionic liquids. These new ionic liquids proved to be effective against a range of pathogenic bacteria and fungi.
Resumo:
The role of hydrogen in promoting the reduction by ammonia of NOx on silver catalysts has been investigated using a Short Time on Stream (STOS) technique to allow differentiation between potentially reactive intermediates and relatively inactive spectator species. Under these conditions, we have used DRIFTS to identify surface nitrate species that are formed and removed on a timescale of seconds. This is in contrast to nitrate species observed under normal steady-state conditions which can continue to form over many tens of minutes. Since this timescale of seconds is very similar to the response rate at which the NH3/NOx to N-2 reaction is accelerated when H-2 is added, or decelerated when H-2 is removed, we conclude that this fast-forming and fast disappearing nitrate species is most probably adsorbed on or close to the active Ag sites. The removal of such a blocking nitrate species from the active sites can explain the effect of H-2 in greatly increasing the rate of the overall de-NOx reaction.
Resumo:
A proof-of-concept study was reported on analysis of antigen-antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles on a microimaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, tiny 30 nm Au nanoparticles were effectively used as nanosensors to monitor changes in refractive index induced by every single binding of the adsorbates. The individual Au nanoparticles were observed with very high signal-to-noise ratio, and a LSPR ?max shift of about 2.5 nm accounting for the detection of PSA antigen with concentration as low as 0.1 pg ml-1 was recorded. This resulted in the successful demonstration of a non-labelling detection system for proteins as well as thousands of different chemical or biological species with possibility of miniaturization and multiplexing scheme.
Resumo:
Introduction: In this study, colloidal gold nanoparticle and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance biosensor.
Methods: The colloidal gold nanoparticle was synthesized as described by Turkevitch et al., and their surface was firstly functionalized with HS(CH2)11(OCH2CH2)3COOH (OEG3¬-COOH) by self assembling technique. Thereafter, those OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti-IgG antibody (specific to the Fc portion of all human IgG subclasses) to form an enzyme-immunogold complex. Characterization was performed by several methods: UV-Vis absorption, dynamic light scattering (DLS), transmission electron microscopy (TEM) and FTIR. The as-prepared enzyme-immunogold complex has been applied in enhancement of SPR immunoassay. A sensor chip used in the experiment was constructed by using 1:10 molar ratio of HS(CH2)11(OCH2CH2)6COOH and HS(CH2)11(OCH2CH2)3OH. The capture protein, GAD65 (autoantigen) which is recognized by anti-GAD antibody (autoantibody) in the sera of insulin-dependent diabetes mellitus patients, was immobilized onto the 1:10 surface via biotin-streptavidin interaction.
Results and conclusions: In the research, we reported the influences of gold nanoparticle and enzyme precipitation on the enhancement of SPR signal. Gold nanoparticle showed its enhancement as being consistent with other previous studies, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. As the results, anti-GAD antibody could be detected at pg/ml level which is far higher than that of commercial ELISA detection kit. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.
Resumo:
The electronic properties of CN adsorbed on Ag electrodes at different potentials have been studied by using the method of self-consistent-charge discrete variational Xa (SCC-DV-Xa) cluster calculations. It is shown that the binding of NCAg is dominated by both electrostatic and polarization effects derived from the charge of CN, and that the transfer of s charge from CN to silver is the largest donation contribution. The electrode potential influences this charge transfer process and the interaction between CN adsorbate and silver electrode. The results of quantum chemistry calculations fit well with the experimental data of in situ spectroscopic studies on the CN/Ag electrode systems. © 1991.