115 resultados para red tide organism
Resumo:
We present the early UV and optical light curve of Type IIP supernova (SN) 2010aq at z = 0.0862, and compare it to analytical models for thermal emission following SN shock breakout in a red supergiant star. SN 2010aq was discovered in joint monitoring between the Galaxy Evolution Explorer (GALEX) Time Domain Survey (TDS) in the NUV and the Pan-STARRS1 Medium Deep Survey (PS1 MDS) in the g, r, i, and z bands. The GALEX and Pan-STARRS1 observations detect the SN less than 1 day after the shock breakout, measure a diluted blackbody temperature of 31,000 +/- 6000 K 1 day later, and follow the rise in the UV/optical light curve over the next 2 days caused by the expansion and cooling of the SN ejecta. The high signal-to-noise ratio of the simultaneous UV and optical photometry allows us to fit for a progenitor star radius of 700 +/- 200R(circle dot), the size of a red supergiant star. An excess in UV emission two weeks after shock breakout compared with SNe well fitted by model atmosphere-code synthetic spectra with solar metallicity is best explained by suppressed line blanketing due to a lower metallicity progenitor star in SN 2010aq. Continued monitoring of PS1 MDS fields by the GALEX TDS will increase the sample of early UV detections of Type II SNe by an order of magnitude and probe the diversity of SN progenitor star properties.
Resumo:
Background. The assembly of the tree of life has seen significant progress in recent years but algae and protists have been largely overlooked in this effort. Many groups of algae and protists have ancient roots and it is unclear how much data will be required to resolve their phylogenetic relationships for incorporation in the tree of life. The red algae, a group of primary photosynthetic eukaryotes of more than a billion years old, provide the earliest fossil evidence for eukaryotic multicellularity and sexual reproduction. Despite this evolutionary significance, their phylogenetic relationships are understudied. This study aims to infer a comprehensive red algal tree of life at the family level from a supermatrix containing data mined from GenBank. We aim to locate remaining regions of low support in the topology, evaluate their causes and estimate the amount of data required to resolve them. Results. Phylogenetic analysis of a supermatrix of 14 loci and 98 red algal families yielded the most complete red algal tree of life to date. Visualization of statistical support showed the presence of five poorly supported regions. Causes for low support were identified with statistics about the age of the region, data availability and node density, showing that poor support has different origins in different parts of the tree. Parametric simulation experiments yielded optimistic estimates of how much data will be needed to resolve the poorly supported regions (ca. 103 to ca. 104 nucleotides for the different regions). Nonparametric simulations gave a markedly more pessimistic image, some regions requiring more than 2.8 105 nucleotides or not achieving the desired level of support at all. The discrepancies between parametric and nonparametric simulations are discussed in light of our dataset and known attributes of both approaches. Conclusions. Our study takes the red algae one step closer to meaningful inclusion in the tree of life. In addition to the recovery of stable relationships, the recognition of five regions in need of further study is a significant outcome of this work. Based on our analyses of current availability and future requirements of data, we make clear recommendations for forthcoming research.
Resumo:
Background: Isoflavones are estrogen-like plant compounds that may protect against cardiovascular disease and endocrine-responsive cancer. Isoflavones may, because of their ability to act as selective estrogen receptor modulators, alter insulin-like growth factor (IGF) status.
Resumo:
Amphibian skin secretions are established sources of bioactive peptides. Here we describe the isolation, structural and pharmacological characterisation of a novel vasoconstrictor peptide from the skin secretion of the African hyperoliid frog, Kassina maculata, which exhibits no structural similarity to any known class of amphibian skin peptide. The peptide consists of 21 amino acid residues, FIKELLPHLSGIIDSVANAIK, and is C-terminally amidated. The provisional structure was obtained by MS/MS fragmentation using an Orbitrap mass spectrometer and L/I ambiguities were resolved following molecular cloning of biosynthetic precursor-encoding cDNA. A synthetic replicate of the peptide was found to possess weak antimicrobial and haemolytic activities but was exceptionally effective in constricting the smooth muscle of rat tail artery (EC50 of 25pM). In reflection of its exceptional potency in constricting rat arterial smooth muscle, the peptide was named kasstasin, a derivation of Kassina and “stasis” (stoppage of flow). These data illustrate the continuing potential of amphibian skin secretions to provide novel natural peptide templates for biological evaluation.
Pulsating or not? A search for hidden pulsations below the red edge of the ZZ Ceti instability strip
Resumo:
The location of the red edge of the ZZ Ceti instability strip is defined observationally as being the lowest temperature for which a white dwarf with a H-rich atmosphere (DA) is known to exhibit periodic brightness variations. Whether this cut-off in flux variations is actually due to a cessation of pulsation or merely due to the attenuation of any variations by the convection zone, rendering them invisible, is not clear. The latter is a theoretical possibility because with decreasing effective temperature, the emergent flux variations become an ever smaller fraction of the amplitude of the flux variations in the interior. In contrast to the flux variations, the visibility of the velocity variations associated with the pulsations is not thought to be similarly affected. Thus, models imply that were it still pulsating, a white dwarf just below the observed red edge should show velocity variations. In order to test this possibility, we used time-resolved spectra of three DA white dwarfs that do not show photometric variability, but which have derived temperatures only slightly lower than the coolest ZZ Ceti variables. We find that none of our three targets show significant periodic velocity variations, and set 95% confidence limits on amplitudes of 3.0, 5.2, and 8.8 km s(-1). Thus, for two out of our three objects, we can rule out velocity variations as large as 5.4 km s(-1) observed for the strongest mode in the cool white dwarf pulsator ZZ Psc. In order to verify our procedures, we also examined similar data of a known ZZ Ceti, HL Tau 76. Applying external information from the light curve, we detect significant velocity variations for this object with amplitudes of up to 4 km s(-1). Our results suggest that substantial numbers of pulsators having large velocity amplitudes do not exist below the observed photometric red edge and that the latter probably reflects a real termination of pulsations.
Resumo:
Females are often thought to use several cues and more than one modality in selection of a mate, possibly because they offer complementary information on a mate's suitability. In the red mason bee, Osmia rufa, we investigated the criteria a female uses to choose a mating partner. We hypothesized that the female uses male thorax vibrations and size as signs of male viability and male odor for kin discrimination and assessment of genetic relatedness. We therefore compared males that had been accepted by a female for copulation with those rejected, in terms of their size, their immediate precopulatory vibrations (using laser vibrometry), the genetic relatedness of unmated and mated pairs (using microsatellite markers) and emitted volatiles (using chemical analyses). Females showed a preference for intermediate-sized males that were slightly larger than the modal male size. Furthermore, male precopulatory vibration burst duration was significantly longer in males accepted for copulation compared with rejected males. Vibrations may indicate vigor and assure that males selected by females are metabolically active and healthy. Females preferentially copulated with males that were genetically more closely related, possibly to avoid outbreeding depression. Volatiles of the cuticular surface differed significantly between accepted and rejected males in the relative amounts of certain hydrocarbons, although the relationship between male odor and female preference was complex. Females may therefore also use differences in odor bouquet to select among males. Our investigations show that O. rufa females appear to use multiple cues in selecting a male. Future investigations are needed to demonstrate whether odor plays a role in kin recognition and how the multiple cues are integrated in mate choice by females.
Resumo:
Red algae (Rhodophyta) are an ancient group with unusual morphological, biochemical, and life-history features including a complete absence of flagella. Although the red algae present many opportunities for studying speciation, this has rarely been explicitly addressed. Here, we examine an aspect of paternal gene flow by determining fertilization success of female Neosiphonia harveyi (Ceramiales), which retains a morphological record of all successful and unsuccessful female gametes. High fertilization rates were observed except when there were no males at all within the tidepool, or in a submerged marina environment. Small numbers of reproductive males were able to saturate fertilization rates, suggesting that limited availability of sperm may be less significant in red algae than previously thought. In another member of the Ceramiales, Antithamnion, relatively large chromosomes permit karyological identification of polyploids. The Western Pacific species Antithamnion sparsum is closely related to the diploid species Antithamnion defectum, known only from the Eastern Pacific, and appears to have evolved from it. Molecular evidence suggests that A. sparsum is an autopolyploid, and that the European species known as Antithamnion densum is divergent from the A. sparsum/defectum complex.
Resumo:
Background
G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum.
Results
Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification.
Conclusions
Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.