51 resultados para nonparametric regression
Resumo:
In many applications, and especially those where batch processes are involved, a target scalar output of interest is often dependent on one or more time series of data. With the exponential growth in data logging in modern industries such time series are increasingly available for statistical modeling in soft sensing applications. In order to exploit time series data for predictive modelling, it is necessary to summarise the information they contain as a set of features to use as model regressors. Typically this is done in an unsupervised fashion using simple techniques such as computing statistical moments, principal components or wavelet decompositions, often leading to significant information loss and hence suboptimal predictive models. In this paper, a functional learning paradigm is exploited in a supervised fashion to derive continuous, smooth estimates of time series data (yielding aggregated local information), while simultaneously estimating a continuous shape function yielding optimal predictions. The proposed Supervised Aggregative Feature Extraction (SAFE) methodology can be extended to support nonlinear predictive models by embedding the functional learning framework in a Reproducing Kernel Hilbert Spaces setting. SAFE has a number of attractive features including closed form solution and the ability to explicitly incorporate first and second order derivative information. Using simulation studies and a practical semiconductor manufacturing case study we highlight the strengths of the new methodology with respect to standard unsupervised feature extraction approaches.
Resumo:
Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size.
Resumo:
Background: Around 10-15% of patients with locally advanced rectal cancer (LARC) undergo a pathologically complete response (TRG4) to neoadjuvant chemoradiotherapy; the rest of patients exhibit a spectrum of tumour regression (TRG1-3). Understanding therapy-related genomic alterations may help us to identify underlying biology or novel targets associated with response that could increase the efficacy of therapy in patients that do not benefit from the current standard of care.
Methods: 48 FFPE rectal cancer biopsies and matched resections were analysed using the WG-DASL HumanHT-12_v4 Beadchip array on the illumina iScan. Bioinformatic analysis was conducted in Partek genomics suite and R studio. Limma and glmnet packages were used to identify genes differentially expressed between tumour regression grades. Validation of microarray results will be carried out using IHC, RNAscope and RT-PCR.
Results: Immune response genes were observed from supervised analysis of the biopsies which may have predictive value. Differential gene expression from the resections as well as pre and post therapy analysis revealed induction of genes in a tumour regression dependent manner. Pathway mapping and Gene Ontology analysis of these genes suggested antigen processing and natural killer mediated cytotoxicity respectively. The natural killer-like gene signature was switched off in non-responders and on in the responders. IHC has confirmed the presence of Natural killer cells through CD56+ staining.
Conclusion: Identification of NK cell genes and CD56+ cells in patients responding to neoadjuvant chemoradiotherapy warrants further investigation into their association with tumour regression grade in LARC. NK cells are known to lyse malignant cells and determining whether their presence is a cause or consequence of response is crucial. Interrogation of the cytokines upregulated in our NK-like signature will help guide future in vitro models.
Resumo:
Histone deacetylases (HDACs) are enzymes involved in transcriptional repression. We aimed to examine the significance of HDAC1 and HDAC2 gene expression in the prediction of recurrence and survival in 156 patients with hepatocellular carcinoma (HCC) among a South East Asian population who underwent curative surgical resection in Singapore. We found that HDAC1 and HDAC2 were upregulated in the majority of HCC tissues. The presence of HDAC1 in tumor tissues was correlated with poor tumor differentiation. Notably, HDAC1 expression in adjacent non-tumor hepatic tissues was correlated with the presence of satellite nodules and multiple lesions, suggesting that HDAC1 upregulation within the field of HCC may contribute to tumor spread. Using competing risk regression analysis, we found that increased cancer-specific mortality was significantly associated with HDAC2 expression. Mortality was also increased with high HDAC1 expression. In the liver cancer cell lines, HEP3B, HEPG2, PLC5, and a colorectal cancer cell line, HCT116, the combined knockdown of HDAC1 and HDAC2 increased cell death and reduced cell proliferation as well as colony formation. In contrast, knockdown of either HDAC1 or HDAC2 alone had minimal effects on cell death and proliferation. Taken together, our study suggests that both HDAC1 and HDAC2 exert pro-survival effects in HCC cells, and the combination of isoform-specific HDAC inhibitors against both HDACs may be effective in targeting HCC to reduce mortality.
Characterising granuloma regression and liver recovery in a murine model of schistosomiasis japonica
Resumo:
For hepatic schistosomiasis the egg-induced granulomatous response and the development of extensive fibrosis are the main pathologies. We used a Schistosoma japonicum-infected mouse model to characterise the multi-cellular pathways associated with the recovery from hepatic fibrosis following clearance of the infection with the anti-schistosomal drug, praziquantel. In the recovering liver splenomegaly, granuloma density and liver fibrosis were all reduced. Inflammatory cell infiltration into the liver was evident, and the numbers of neutrophils, eosinophils and macrophages were significantly decreased. Transcriptomic analysis revealed the up-regulation of fatty acid metabolism genes and the identification of Peroxisome proliferator activated receptor alpha as the upstream regulator of liver recovery. The aryl hydrocarbon receptor signalling pathway which regulates xenobiotic metabolism was also differentially up-regulated. These findings provide a better understanding of the mechanisms associated with the regression of hepatic schistosomiasis.