110 resultados para low-dose pre-exposure
Resumo:
Extremely low-frequency electromagnetic fields (ELF-EMF) have been reported to induce lesions in DNA and to enhance the mutagenicity of ionising radiation. However, the significance of these findings is uncertain because the determination of the carcinogenic potential of EMFs has largely been based on investigations of large chromosomal aberrations. Using a more sensitive method of detecting DNA damage involving microsatellite sequences, we observed that exposure of UVW human glioma cells to ELF-EMF alone at a field strength of 1 mT (50 Hz) for 12 h gave rise to 0.011 mutations/locus/cell. This was equivalent to a 3.75-fold increase in mutation induction compared with unexposed controls. Furthermore, ELF-EMF increased the mutagenic capacity of 0.3 and 3 Gy gamma-irradiation by factors of 2.6 and 2.75, respectively. These results suggest not only that ELF-EMF is mutagenic as a single agent but also that it can potentiate the mutagenicity of ionising radiation. Treatment with 0.3 Gy induced more than 10 times more mutations per unit dose than irradiation with 3 Gy, indicating hypermutability at low dose.
Resumo:
Hepatocellular carcinoma (HCC) has a high mortality in East Asia and Sub-Saharan Africa, two regions where the main etiologic factors are chronic infections with hepatitis B vir-us and dietary exposure to aflatoxin. A single base substitution at the third nucleotide of codon 249 of TP53 (R249S) is common in HCC in these regions and has been associated with aflatoxin-DNA adducts. To determine whether R249S may be detected in plasma DNA before HCC diagnosis, we conducted a case-control study nested in a cohort of adult chronic hepatitis B virus carriers from Qidong County, People's Republic of China. Of the 234 plasma specimens that yielded adequate DNA, only 2 (0.9%) were positive for R249S by restriction fragment length polymorphisms, and both of them were controls. Of the 249 subjects tested for aflatoxin-albumin adducts, 168 (67%) were positive, with equal distribution between cases and controls. Aflatoxin-albumin adduct levels were low in the study, suggesting an overall low ongoing exposure to aflatoxin in this cohort. The R249S mutation was detected in 11 of 18 (61%) available tumor tissues. To assess whether low levels of mutant DNA were detectable in pre-diagnosis plasma, 14 plasma specimens from these patients were analyzed by short oligonucleotide mass analysis. Nine of them (64%) were found to be positive. Overall, these results suggest that HCC containing R249S can occur in the absence of significant recent exposure to aflatoxins. The use of short oligonucleotide mass analysis in the context of low ongoing aflatoxin exposure may allow the detection of R249S in plasma several months ahead of clinical diagnosis. (Cancer Epidemiol Biomarkers Prev 2009;18(5):1638-43)
Resumo:
Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells’ differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction of Apurinic Endonuclease-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of protons cause latent damage to spinal cord architecture while fractionation of HZE (28Si) induce increase in APE1 with single dose, which then decreased with fractionation. The oligodendrocyte progenitor cells differentiation was skewed with increase in immature oligodendrocytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects.
Resumo:
Aims: To determine whether routine outpatient monitoring of growth predicts adrenal suppression in prepubertal children treated with high dose inhaled glucocorticoid.
Methods: Observational study of 35 prepubertal children (aged 4–10 years) treated with at least 1000 µg/day of inhaled budesonide or equivalent potency glucocorticoid for at least six months. Main outcome measures were: changes in HtSDS over 6 and 12 month periods preceding adrenal function testing, and increment and peak cortisol after stimulation by low dose tetracosactrin test. Adrenal suppression was defined as a peak cortisol 500 nmol/l.
Results: The areas under the receiver operator characteristic curves for a decrease in HtSDS as a predictor of adrenal insufficiency 6 and 12 months prior to adrenal testing were 0.50 (SE 0.10) and 0.59 (SE 0.10). Prediction values of an HtSDS change of –0.5 for adrenal insufficiency at 12 months prior to testing were: sensitivity 13%, specificity 95%, and positive likelihood ratio of 2.4. Peak cortisol reached correlated poorly with change in HtSDS ( = 0.23, p = 0.19 at 6 months; = 0.33, p = 0.06 at 12 months).
Conclusions: Monitoring growth does not enable prediction of which children treated with high dose inhaled glucocorticoids are at risk of potentially serious adrenal suppression. Both growth and adrenal function should be monitored in patients on high dose inhaled glucocorticoids. Further research is required to determine the optimal frequency of monitoring adrenal function.
Resumo:
The observation of radiation-induced bystander responses, in which cells respond to their neighbors being irradiated, has important implications for understanding mechanisms of radiation action particularly after low-dose exposure. Much of this questions the current dogma of direct DNA damage driving response in irradiated systems. In this study, we have used a charged-particle microbeam to target individual helium ions ((3)He(2+)) to individual cells within a population of radioresistant glioma cells cultured alone or in coculture with primary human fibroblasts. We found that even when a single cell within the glioma population was precisely traversed through its cytoplasm with one (3)He(2+) ion, bystander responses were induced in the neighboring nonirradiated glioma or fibroblasts so that the yield of micronuclei was increased by 36% for the glioma population and 78% for the bystander fibroblast population. Importantly, the yield of bystander-induced micronuclei was independent of whether the cytoplasm or nucleus of a cell was targeted. The bystander responses were fully eliminated when the populations were treated with 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide or filipin, which scavenge nitric oxide (NO) and disrupt membrane rafts, respectively. By using the probe 4-amino-5-methylamino-2',7'-difluorofluorescein, it was found that the NO level in the glioma population was increased by 15% after 1 or 10 cytoplasmic traversals, and this NO production was inhibited by filipin. This finding shows that direct DNA damage is not required for switching on of important cell-signaling mechanisms after low-dose irradiation and that, under these conditions, the whole cell should be considered a sensor of radiation exposure.
Resumo:
Exposure to ionizing radiation can increase the risk of cancer, which is often characterized by genomic instability. In environmental exposures to high-LET radiation (e.g. Ra-222), it is unlikely that many cells will be traversed or that any cell will be traversed by more than one alpha particle, resulting in an in vivo bystander situation, potentially involving inflammation. Here primary human lymphocytes were irradiated with precise numbers of He-3(2+) ions delivered to defined cell population fractions, to as low as a single cell being traversed, resembling in vivo conditions. Also, we assessed the contribution to genomic instability of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFA). Genomic instability was significantly elevated in irradiated groups ( greater than or equal totwofold over controls) and was comparable whether cells were traversed by one or two He-3(2+) ions. Interestingly, substantial heterogeneity in genomic instability between experiments was observed when only one cell was traversed. Genomic instability was significantly reduced (60%) in cultures in which all cells were irradiated in the presence of TNFA antibody, but not when fractions were irradiated under the same conditions, suggesting that TNFA may have a role in the initiation of genomic instability in irradiated cells but not bystander cells. These results have implications for low-dose exposure risks and cancer. (C) 2005 by Radiation Research Society.
Resumo:
Background: Fluticasone propionate was introduced in 1993 in the UK as a potentially safer inhaled corticosteroid than those already in use. The efficacy and safety of fluticasone has been established at recommended doses of 200 µg/day, but not at the higher doses that are often used.
Methods: Growth retardation was observed in six severely asthmatic children after introduction of high-dose fluticasone propionate treatment (dry powder). Assessment of cortisol response was by insulin-induced hypoglycaemia in three cases, by short tetracosactrin test in two, and by low-dose tetracosactrin and 24-hour urinary cortisol/creatinine ratio in one.
Findings: Six children with growth retardation noted after treatment with high-dose fluticasone propionate were found to have adrenal suppression. In one case the growth rate and cortisol response returned to normal 9 months after the fluticasone dose was reduced to 500 µg/day.
Interpretation: When high doses of fluticasone propionate are used, growth may be retarded and adrenal suppression may occur.
Resumo:
This study was carried out to investigate whether the electronic portal imaging (EPI) acquisition process could be optimized, and as a result tolerance and action levels be set for the PIPSPro QC-3V phantom image quality assessment. The aim of the optimization process was to reduce the dose delivered to the patient while maintaining a clinically acceptable image quality. This is of interest when images are acquired in addition to the planned patient treatment, rather than images being acquired using the treatment field during a patient's treatment. A series of phantoms were used to assess image quality for different acquisition settings relative to the baseline values obtained following acceptance testing. Eight Varian aS500 EPID systems on four matched Varian 600C/D linacs and four matched Varian 2100C/D linacs were compared for consistency of performance and images were acquired at the four main orthogonal gantry angles. Images were acquired using a 6 MV beam operating at 100 MU min(-1) and the low-dose acquisition mode. Doses used in the comparison were measured using a Farmer ionization chamber placed at d(max) in solid water. The results demonstrated that the number of reset frames did not have any influence on the image contrast, but the number of frame averages did. The expected increase in noise with corresponding decrease in contrast was also observed when reducing the number of frame averages. The optimal settings for the low-dose acquisition mode with respect to image quality and dose were found to be one reset frame and three frame averages. All patients at the Northern Ireland Cancer Centre are now imaged using one reset frame and three frame averages in the 6 MV 100 MU min(-1) low-dose acquisition mode. Routine EPID QC contrast tolerance (+/-10) and action (+/-20) levels using the PIPSPro phantom based around expected values of 190 (Varian 600C/D) and 225 (Varian 2100C/D) have been introduced. The dose at dmax from electronic portal imaging has been reduced by approximately 28%, and while the image quality has been reduced, the images produced are still clinically acceptable.
Resumo:
Purpose
Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy.
Methods and Materials
Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose-volume histograms and mean doses were evaluated by converting these survival levels into "signaling-adjusted doses" for comparison.
Results
Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro are not contradicted by comparison with clinical observations. Future investigations are needed to validate these effects in vivo and to quantify their ranges and potential impact on more advanced radiation therapy techniques.
Resumo:
Objectives: This study measured and compared the pharmacokinetics of CMPD167, a small molecule antiretro- viral CCR5 inhibitor with potential as an HIV microbicide, following vaginal, rectal and oral administration in rhe- sus macaques.
Methods: A vaginal hydroxyethylcellulose (HEC) gel, a rectal HEC gel, a silicone elastomer matrix-type vaginal ring and an oral solution, each containing CMPD167, were prepared and administered to rhesus macaques pretreated with Depo-Provera. CMPD167 concentrations in vaginal fluid, vaginal tissue (ring only), rectal fluid and blood plasma were quantified by HPLC–mass spectrometry.
Results: CMPD167 concentrations measured in rectal fluid, vaginal fluid and blood plasma were highly depend- ent on both the route of administration and the formulation type. Although rectal and vaginal fluid concentra- tions were highest when CMPD167 was administered locally (via either gel or ring), lower concentrations of the drug were also measured in these compartments following administration at the remote mucosal site or orally. CMPD167 levels in the vaginal and rectal fluid following oral administration were relatively low compared with local administration.
Conclusions: The study provides clear evidence for vaginal – rectal and rectal – vaginal drug transfer pathways and suggests that oral pre-exposure prophylaxis with CMPD167 may be less efficacious at preventing sexual trans- mission of HIV-1 than topically applied products.
Resumo:
The role of antiplatelet therapy as primary prophylaxis of thrombosis in low-risk essential thrombocythemia has not been studied in randomized clinical trials. We assessed the benefit/risk of low-dose aspirin in 433 low-risk essential thrombocythemia patients (CALR-mutated n=271, JAK2V617F-mutated n=162) who were on antiplatelet therapy or observation only. After a 2215 person-years follow-up free from cytoreduction, 25 thrombotic and 17 bleeding episodes were recorded. In CALR-mutated patients, antiplatelet therapy did not affect the risk of thrombosis but was associated with a higher incidence of bleeding (12.9 vs. 1.8 x1000 patient-years, p=0.03). In JAK2V617F-mutated patients, low-dose aspirin was associated with a reduced incidence of venous thrombosis with no effect on the risk of bleeding. Coexistence of JAK2V617F-mutation and cardiovascular risk factors increased the risk of thrombosis, even after adjusting for treatment with low-dose aspirin (incidence rate ratio: 9.8; 95% confidence interval: 2.3-42.3; p=0.02). Time free from cytoreduction was significantly shorter in CALR-mutated than in JAK2V617F-mutated essential thrombocythemia (median time 5 years and 9.8 years, respectively; p=0.0002) usually to control extreme thrombocytosis. In conclusion, in patients with low-risk, CALR-mutated essential thrombocythemia, low-dose aspirin does not reduce the risk of thrombosis and may increase the risk of bleeding.
Resumo:
In view of the evidence that cognitive deficits in schizophrenia are critically important for long-term outcome, it is essential to establish the effects that the various antipsychotic compounds have on cognition, particularly second-generation drugs. This parallel group, placebo-controlled study aimed to compare the effects in healthy volunteers (n = 128) of acute doses of the atypical antipsychotics amisulpride (300 mg) and risperidone (3 mg) to those of chlorpromazine (100 mg) on tests thought relevant to the schizophrenic process: auditory and visual latent inhibition, prepulse inhibition of the acoustic startle response, executive function and eye movements. The drugs tested were not found to affect auditory latent inhibition, prepulse inhibition or executive functioning as measured by the Cambridge Neuropsychological Test Battery and the FAS test of verbal fluency. However, risperidone disrupted and amisulpride showed a trend to disrupt visual latent inhibition. Although amisulpride did not affect eye movements, both risperidone and chlorpromazine decreased peak saccadic velocity and increased antisaccade error rates, which, in the risperidone group, correlated with drug-induced akathisia. It was concluded that single doses of these drugs appear to have little effect on cognition, but may affect eye movement parameters in accordance with the amount of sedation and akathisia they produce. The effect risperidone had on latent inhibition is likely to relate to its serotonergic properties. Furthermore, as the trend for disrupted visual latent inhibition following amisulpride was similar in nature to that which would be expected with amphetamine, it was concluded that its behaviour in this model is consistent with its preferential presynaptic dopamine antagonistic activity in low dose and its efficacy in the negative symptoms of schizophrenia.
Resumo:
Background and purpose: To investigate the potential of intensity-modulated radiotherapy (IMRT) to reduce lung irradiation in the treatment of oesophageal carcinoma with radical radiotherapy.Materials and methods: A treatment planning study was performed to compare two-phase conformal radiotherapy (CFRT) with IMRT in five patients. The CFRT plans consisted of anterior, posterior and bilateral posterior oblique fields, while the IMRT plans consisted of either nine equispaced fields (9F), or four fields (4F) with orientations equal to the CFRT plans. IMRT plans with seven, five or three equispaced fields were also investigated in one patient. Treatment plans were compared using dose-volume histograms and normal tissue complication probabilities.Results: The 9F IMRT plan was unable to improve on the homogeneity of dose to the planning target volume (PTV), compared with the CFRT plan (dose range, 16.9+/-4.5 (1 SD) vs. 12.4+/-3.9%; P=0.06). Similarly, the 9F IMRT plan was unable to reduce the mean lung dose (11.7+/-3.2 vs. 11.0+/-2.9 Gy; P=0.2). Similar results were obtained for seven, five and three equispaced fields in the single patient studied. The 4F IMRT plan provided comparable PTV dose homogeneity with the CFRT plan (11.8+/-3.3 vs. 12.4+/-3.9%; P=0.6), with reduced mean lung dose (9.5+/-2.3 vs 11.0+/-2.9 Gy; P=0.001).Conclusions: IMRT using nine equispaced fields provided no improvement over CFRT. This was because the larger number of fields in the IMRT plan distributed a low dose over the entire lung. In contrast, IMRT using four fields equal to the CFRT fields offered an improvement in lung sparing. Thus, IMRT with a few carefully chosen field directions may lead to a modest reduction in pneumonitis, or allow tumour dose escalation within the currently accepted lung toxicity.
Resumo:
Background and purpose: To compare external beam radiotherapy techniques for parotid gland tumours using conventional radiotherapy (RT), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT). To optimise the IMRT techniques, and to produce an IMRT class solution.Materials and methods: The planning target volume (PTV), contra-lateral parotid gland, oral cavity, brain-stem, brain and cochlea were outlined on CT planning scans of six patients with parotid gland tumours. Optimised conventional RT and 3DCRT plans were created and compared with inverse-planned IMRT dose distributions using dose-volume histograms. The aim was to reduce the radiation dose to organs at risk and improve the PTV dose distribution. A beam-direction optimisation algorithm was used to improve the dose distribution of the IMRT plans, and a class solution for parotid gland IMRT was investigated.Results: 3DCRT plans produced an equivalent PTV irradiation and reduced the dose to the cochlea, oral cavity, brain, and other normal tissues compared with conventional RT. IMRT further reduced the radiation dose to the cochlea and oral cavity compared with 3DCRT. For nine- and seven-field IMRT techniques, there was an increase in low-dose radiation to non-target tissue and the contra-lateral parotid gland. IMRT plans produced using three to five optimised intensity-modulated beam directions maintained the advantages of the more complex IMRT plans, and reduced the contra-lateral parotid gland dose to acceptable levels. Three- and four-field non-coplanar beam arrangements increased the volume of brain irradiated, and increased PTV dose inhomogeneity. A four-field class solution consisting of paired ipsilateral coplanar anterior and posterior oblique beams (15, 45, 145 and 170o from the anterior plane) was developed which maintained the benefits without the complexity of individual patient optimisation.Conclusions: For patients with parotid gland tumours, reduction in the radiation dose to critical normal tissues was demonstrated with 3DCRT compared with conventional RT. IMRT produced a further reduction in the dose to the cochlea and oral cavity. With nine and seven fields, the dose to the contra-lateral parotid gland was increased, but this was avoided by optimisation of the beam directions. The benefits of IMRT were maintained with three or four fields when the beam angles were optimised, but were also achieved using a four-field class solution. Clinical trials are required to confirm the clinical benefits of these improved dose distributions.