89 resultados para Wilms’ tumor, Wt1, tetracycline system, conditional mouse model, urogenital development
Characterising granuloma regression and liver recovery in a murine model of schistosomiasis japonica
Resumo:
For hepatic schistosomiasis the egg-induced granulomatous response and the development of extensive fibrosis are the main pathologies. We used a Schistosoma japonicum-infected mouse model to characterise the multi-cellular pathways associated with the recovery from hepatic fibrosis following clearance of the infection with the anti-schistosomal drug, praziquantel. In the recovering liver splenomegaly, granuloma density and liver fibrosis were all reduced. Inflammatory cell infiltration into the liver was evident, and the numbers of neutrophils, eosinophils and macrophages were significantly decreased. Transcriptomic analysis revealed the up-regulation of fatty acid metabolism genes and the identification of Peroxisome proliferator activated receptor alpha as the upstream regulator of liver recovery. The aryl hydrocarbon receptor signalling pathway which regulates xenobiotic metabolism was also differentially up-regulated. These findings provide a better understanding of the mechanisms associated with the regression of hepatic schistosomiasis.
Resumo:
The development of new learning models has been of great importance throughout recent years, with a focus on creating advances in the area of deep learning. Deep learning was first noted in 2006, and has since become a major area of research in a number of disciplines. This paper will delve into the area of deep learning to present its current limitations and provide a new idea for a fully integrated deep and dynamic probabilistic system. The new model will be applicable to a vast number of areas initially focusing on applications into medical image analysis with an overall goal of utilising this approach for prediction purposes in computer based medical systems.
Resumo:
Interaction of vascular cells with the laminin component of basement membranes is important for normal cell function. Likewise, abnormal interactions may have a critical role in vascular pathology. It has been previously demonstrated that the 67 kDa laminin receptor (67LR) is expressed at high levels during proliferative retinopathy in a mouse model and in the current study we have examined 67LR in the neonatal mouse to determine if this receptor plays a role in aspects of developmental angiogenesis in the developing murine retina. Groups of C57/BL6 mice were killed at postnatal day P1, P3, P5, P7, P9 and P11 to assess the retinal vasculature. A number of mice were perfused with FITC-dextran and the eyes removed, fixed in 4% paraformaldehyde (PFA) and flat-mounted for confocal scanning laser microscopy. The eyes from the remaining mice were either placed in 4% PFA and embedded in paraffin-wax, or had the neural retina dissected off and total RNA or protein extracted. Immunofluorescence, in situ hybridization, quantitative reverse transcriptase polymerase chain reaction and Western blotting analysis were employed to locate and determine expression levels of 67LR. Both 67LR mRNA and protein expression showed a characteristic bi-phasic expression pattern which correlated with key stages of retinal vascular development in the murine retina. 67LR showed high expression levels at P1 (P < 0.05) (correlating with superficial vascular plexus formation) and at P7 (P < 0.05) (correlating with deep vascular plexus formation). Conversely, 67LR expression was decreased when active angiogenic activity was lowest. Significantly, optical sectioning of retinal flat-mounts revealed high levels of 67LR expression in developing segments of both superficial and deep capillary plexi, a pattern which co-localized strongly with laminin. 67LR is regulated during post-natal development of the retinal vasculature. High levels of 67LR during the two well-defined phases of retinal capillary plexus formation suggests that this receptor may play an important role in retinal angiogenesis.
Resumo:
Histidine is a naturally occurring amino acid with antioxidant properties, which is present in low amounts in tissues throughout the body. We recently synthesized and characterized histidine analogues related to the natural dipeptide carnosine, which selectively scavenge the toxic lipid peroxidation product 4-hydroxynonenal (HNE). We now report that the histidine analogue histidyl hydrazide is effective in reducing brain damage and improving functional outcome in a mouse model of focal ischemic stroke when administered intravenously at a dose of 20 mg/kg, either 30 min before or 60 min and 3 h after the onset of middle cerebral artery occlusion. The histidine analogue also protected cultured rat primary neurons against death induced by HNE, chemical hypoxia, glucose deprivation, and combined oxygen and glucose deprivation. The histidine analogue prevented neuronal apoptosis as indicated by decreased production of cleaved caspase-3 protein. These findings suggest a therapeutic potential for HNE-scavenging histidine analogues in the treatment of stroke and related neurodegenerative conditions.
Resumo:
Background: Neutrophil elastase (NE) activity is increased in lung diseases such as a1-antitrypsin (A1AT) deficiency and pneumonia. It has recently been shown to induce expression of cathepsin B and matrix metalloprotease 2 (MMP-2) in vitro and in a mouse model. It is postulated that increased cathepsin B and MMP-2 in acute and chronic lung diseases result from high levels of extracellular NE and that expression of these proteases could be inhibited by A1AT augmentation therapy.
Methods: Cathepsin and MMP activities were assessed in bronchoalveolar lavage (BAL) fluid from patients with A1AT deficiency, pneumonia and control subjects. Macrophages were exposed to BAL fluid rich in free NE from patients with pneumonia following pretreatment with A1AT. MMP-2, cathepsin B, secretory leucoprotease inhibitor (SLPI) and lactoferrin levels were determined in BAL fluid from A1AT-deficient patients before and after aerosolisation of A1AT.
Results: BAL fluid from both patients with pneumonia and those with A1AT deficiency containing free NE had increased cathepsin B and MMP-2 activities compared with BAL fluid from healthy volunteers. The addition of A1AT to BAL fluid from patients with pneumonia greatly reduced NE-induced cathepsin B and MMP-2 expression in macrophages in vitro. A1AT augmentation therapy to A1AT-deficient individuals also reduced cathepsin B and MMP-2 activity in BAL fluid in vivo. Furthermore, A1AT-deficient patients had higher levels of SLPI and lactoferrin after A1AT augmentation therapy.
Conclusion: These findings suggest a novel role for A1AT inhibition of NE-induced upregulation of MMP and cathepsin expression both in vitro and in vivo.
Resumo:
Genetic or vitamin D3-induced overexpression of thymic stromal lymphopoietin (TSLP) by keratinocytes results in an atopic dermatitis (AD)-like inflammatory phenotype in mice echoing the discovery of high TSLP expression in epidermis from AD patients. Although skin dendritic cells (DC) are suspected to be involved in AD, direct evidence of a pathogenetic role for skin DC in TSLP-induced skin inflammation has not yet been demonstrated. In a mouse model of AD, i.e. mice treated with the low-calcemic vitamin D3 analogue, MC903, we show that epidermal Langerhans cells (LC)-depleted mice treated with MC903 do neither develop AD-like inflammation nor increased serum IgE as compared to vitamin D3 analogue-treated control mice. Accordingly, we show that, in mice treated with MC903 or in K14-TSLP transgenic mice, expression of maturation markers by LC is increased whereas maturation of dermal DC is not altered. Moreover, only LC are responsible for the polarization of naive CD4+ T cells to a Th2 phenotype, i.e. decrease in interferon-gamma and increase in interleukin (IL)-13 production by CD4+ T cells. This effect of LC on T-lymphocytes does not require OX40-L/CD134 and is mediated by a concomitant down-regulation of IL-12 and CD70. Although it was previously stated that TSLP up-regulates the production of thymus and activation-regulated chemokine (TARC)/chemokine (C-C motif) ligand 17 (CCL17) and macrophage-derived chemokine (MDC)/CCL22 by human LC in vitro, our work shows that production of these Th2- cell attracting chemokines is increased only in keratinocytes in response to TSLP overexpression. These results demonstrate that LC are required for the development of AD in mouse models of AD involving epidermal TSLP overexpression.
Resumo:
Most tissues develop from stem cells and precursors that undergo differentiation as their proliferative potential decreases. Mature differentiated cells rarely proliferate and are replaced at the end of their life by new cells derived from precursors. Langerhans cells (LCs) of the epidermis, although of myeloid origin, were shown to renew in tissues independently from the bone marrow, suggesting the existence of a dermal or epidermal progenitor. We investigated the mechanisms involved in LC development and homeostasis. We observed that a single wave of LC precursors was recruited in the epidermis of mice around embryonic day 18 and acquired a dendritic morphology, major histocompatibility complex II, CD11c, and langerin expression immediately after birth. Langerin+ cells then undergo a massive burst of proliferation between postnatal day 2 (P2) and P7, expanding their numbers by 10–20-fold. After the first week of life, we observed low-level proliferation of langerin+ cells within the epidermis. However, in a mouse model of atopic dermatitis (AD), a keratinocyte signal triggered increased epidermal LC proliferation. Similar findings were observed in epidermis from human patients with AD. Therefore, proliferation of differentiated resident cells represents an alternative pathway for development in the newborn, homeostasis, and expansion in adults of selected myeloid cell populations such as LCs. This mechanism may be relevant in locations where leukocyte trafficking is limited.
Outgrowth Endothelial Cells: Characterization and Their Potential for Reversing Ischemic Retinopathy
Resumo:
Purpose. Endothelial progenitor cells (EPCs) have potential for promoting vascular repair and revascularization of ischemic retina. However, the highly heterogeneous nature of these cells causes confusion when assessing their biological functions. The purpose of this study was to provide a comprehensive comparison between the two main EPC subtypes, early EPCs (eEPCs) and outgrowth endothelial cells (OECs), and to establish the potential of OECs as a novel cell therapy for ischemic retinopathy.
Methods. Two types of human blood-derived EPCs were isolated and compared using immunophenotyping and multiple in vitro functional assays to assess interaction with retinal capillary endothelial cells and angiogenic activity. OECs were delivered intravitreally in a mouse model of ischemic retinopathy, and flat mounted retinas were examined using confocal microscopy.
Results. These data indicate that eEPCs are hematopoietic cells with minimal proliferative capacity that lack tube-forming capacity. By contrast, OECs are committed to an endothelial lineage and have significant proliferative and de novo tubulogenic potential. Furthermore, only OECs are able to closely interact with endothelial cells through adherens and tight junctions and to integrate into retinal vascular networks in vitro. The authors subsequently chose OECs to test a novel cell therapy approach for ischemic retinopathy. Using a murine model of retinal ischemia, they demonstrated that OECs directly incorporate into the resident vasculature, significantly decreasing avascular areas, concomitantly increasing normovascular areas, and preventing pathologic preretinal neovascularization.
Conclusions. As a distinct EPC population, OECs have potential as therapeutic cells to vascularize the ischemic retina.
Resumo:
Background: Current guidelines encourage the use of statins to reduce the risk of cardiovascular disease in diabetic patients; however the impact of these drugs on diabetic retinopathy is not well defined. Moreover, pleiotropic effects of statins on the highly specialised retinal microvascular endothelium remain largely unknown. The objective of this study was to investigate the effects of clinically relevant concentrations of simvastatin on retinal endothelium in vitro and in vivo.
Methods and Findings: Retinal microvascular endothelial cells (RMECs) were treated with 0.01–10 µM simvastatin and a biphasic dose-related response was observed. Low concentrations enhanced microvascular repair with 0.1 µM simvastatin significantly increasing proliferation (p<0.05), and 0.01 µM simvastatin significantly promoting migration (p<0.05), sprouting (p<0.001), and tubulogenesis (p<0.001). High concentration of simvastatin (10 µM) had the opposite effect, significantly inhibiting proliferation (p<0.01), migration (p<0.01), sprouting (p<0.001), and tubulogenesis (p<0.05). Furthermore, simvastatin concentrations higher than 1 µM induced cell death. The mouse model of oxygen-induced retinopathy was used to investigate the possible effects of simvastatin treatment on ischaemic retinopathy. Low dose simvastatin(0.2 mg/Kg) promoted retinal microvascular repair in response to ischaemia by promoting intra-retinal re-vascularisation (p<0.01). By contrast, high dose simvastatin(20 mg/Kg) significantly prevented re-vascularisation (p<0.01) and concomitantly increased pathological neovascularisation (p<0.01). We also demonstrated that the pro-vascular repair mechanism of simvastatin involves VEGF stimulation, Akt phosphorylation, and nitric oxide production; and the anti-vascular repair mechanism is driven by marked intracellular cholesterol depletion and related disorganisation of key intracellular structures.
Conclusions: A beneficial effect of low-dose simvastatin on ischaemic retinopathy is linked to angiogenic repair reducing ischaemia, thereby preventing pathological neovascularisation. High-dose simvastatin may be harmful by inhibiting reparative processes and inducing premature death of retinal microvascular endothelium which increases ischaemia-induced neovascular pathology. Statin dosage should be judiciously monitored in patients who are diabetic or are at risk of developing other forms of proliferative retinopathy.
Resumo:
Most of human gastrointestinal stromal tumors (GIST) are driven by activating mutations in the protooncogene KIT, a tyrosine kinase receptor. Clinical treatment with imatinib targets the kinase domain of KIT, but tumor regrowth occurs as a result of them development of resistant mutations in the kinase active site. An alternative small-molecule approach to GIST therapy is described, in which the KIT gene is directly targeted, and thus, kinase resistance may be circumvented. A naphthalene diimide derivative has been used to demonstrate the concept of dual quadruplex targeting. This compound strongly stabilizes both telomeric quadruplex DNA and quadruplex sites in the KIT promoter in vitro. It is shown here that the compound is a potent inducer of growth arrest in a patient-derived GIST cell line at a concentration (similar to 1 mu M) that also results in effective inhibition of telomerase activity and almost complete suppression of KIT mRNA and KIT protein expression. Molecular modeling studies with a telomeric quadruplex have been used to rationalize aspects of the experimental quadruplex melting data.
Resumo:
Vaccine-mediated prevention of primary HIV-1 infection at the heterosexual mucosal portal of entry may be facilitated by highly optimised formulations or drug delivery devices for intravaginal (i.vag) immunization. Previously we described hydroxyethylcellulose (HEC)-based rheologically structured gel vehicles (RSVs) for vaginal immunization of an HIV-1 vaccine candidate, a soluble recombinant trimeric HIV-1 clade-C envelope glycoprotein designated CN54gp140. Here we investigated the efficacy of lyophilized solid dosage formulations (LSDFs) for prolonging antigen stability and as i.vag delivery modalities. LSDFs were designed and developed that upon i.vag administration they would reconstitute with the imbibing of vaginal fluid to mucoadhesive, site-retentive semi-solids. Mice were immunized with lyophilized equivalents of (i) RSVs, (ii) modified versions of the RSVs more suited to lyophilization (sodium carboxymethyl cellulose (NaCMC)-based gels) and (iii) Carbopol® gel, all containing CN54gp140. NaCMC-based LSDFs provided significantly enhanced antigen stability compared to aqueous-based RSVs. Rheological analysis indicated the NaCMC-based LSDFs would offer enhanced vaginal retention in woman compared to more conventional vaginal gel formulations. All LSDFs were well tolerated in the mouse model. Following i.vag administration, all LSDFs boosted systemic CN54gp140-specific antibody responses in sub-cutaneously primed mice. Induction of CN54gp140-specific antibody responses in the female genital tract was evident. Of all the LSDFs the fastest releasing which was lyophilized Carbopol® gel elicited immune responses comparable to buffer instillation of antigen suggesting that rather than slower sustained release, initial high burst release from the LSDFs may suffice. The boosting of specific immune responses upon i.vag administration indicates that LSDFs are viable mucosal vaccine delivery modalities promoting antigen stability and facilitating intimate exposure of CN54gp140 to the mucosal-associated lymphoid tissue of the female genital tract.
Resumo:
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization. The Journal of Immunology, 2011, 186: 3164-3172.
Resumo:
Chronic lung infection by opportunistic pathogens, such as Pseudomonas aeruginosa and members of the Burkholderia cepacia complex, is a major cause of morbidity and mortality in patients with cystic fibrosis. Outer membrane proteins (OMPs) of gram-negative bacteria are promising vaccine antigen candidates. In this study, we evaluated the immunogenicity, protection, and cross-protection conferred by intranasal vaccination of mice with OMPs from B. multivorans plus the mucosal adjuvant adamantylamide dipeptide (AdDP). Robust mucosal and systemic immune responses were stimulated by vaccination of naive animals with OMPs from B. multivorans and B. cenocepacia plus AdDP. Using a mouse model of chronic pulmonary infection, we observed enhanced clearance of B. multivorans from the lungs of vaccinated animals, which correlated with OMP-specific secretory immunoglobulin A responses. Furthermore, OMP-immunized mice showed rapid resolution of the pulmonary infection with virtually no lung pathology after bacterial challenge with B. multivorans. In addition, we demonstrated that administration of B. multivorans OMP vaccine conferred protection against B. cenocepacia challenge in this mouse infection model, suggesting that OMPs provide cross-protection against the B. cepacia complex. Therefore, we concluded that mucosal immunity to B. multivorans elicited by intranasal vaccination with OMPs plus AdDP could prevent early steps of colonization and infection with B. multivorans and also ameliorate lung tissue damage, while eliciting cross-protection against B. cenocepacia. These results support the notion that therapies leading to increased mucosal immunity in the airways may help patients with cystic fibrosis.
Resumo:
Reendothelialization involves endothelial progenitor cell (EPC) homing, proliferation, and differentiation, which may be influenced by fluid shear stress and local flow pattern. This study aims to elucidate the role of laminar flow on embryonic stem (ES) cell differentiation and the underlying mechanism. We demonstrated that laminar flow enhanced ES cell-derived progenitor cell proliferation and differentiation into endothelial cells (ECs). Laminar flow stabilized and activated histone deacetylase 3 (HDAC3) through the Flk-1-PI3K-Akt pathway, which in turn deacetylated p53, leading to p21 activation. A similar signal pathway was detected in vascular endothelial growth factor-induced EC differentiation. HDAC3 and p21 were detected in blood vessels during embryogenesis. Local transfer of ES cell-derived EPC incorporated into injured femoral artery and reduced neointima formation in a mouse model. These data suggest that shear stress is a key regulator for stem cell differentiation into EC, especially in EPC differentiation, which can be used for vascular repair, and that the Flk-1-PI3K-Akt-HDAC3-p53-p21 pathway is crucial in such a process.
Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia
Resumo:
Rationale: Bacterial pneumonia is the most common infectious cause of death worldwide and treatment is increasingly hampered by antibiotic resistance. Mesenchymal stem cells (MSCs) have been demonstrated to provide protection against acute inflammatory lung injury; however, their potential therapeutic role in the setting of bacterial pneumonia has not been well studied.
Objective: This study focused on testing the therapeutic and mechanistic effects of MSCs in a mouse model of Gram-negative pneumonia.
Methods and results: Syngeneic MSCs from wild-type mice were isolated and administered via the intratracheal route to mice 4 h after the mice were infected with Escherichia coli. 3T3 fibroblasts and phosphate-buffered saline (PBS) were used as controls for all in vivo experiments. Survival, lung injury, bacterial counts and indices of inflammation were measured in each treatment group. Treatment with wild-type MSCs improved 48 h survival (MSC, 55%; 3T3, 8%; PBS, 0%; p<0.05 for MSC vs 3T3 and PBS groups) and lung injury compared with control mice. In addition, wild-type MSCs enhanced bacterial clearance from the alveolar space as early as 4 h after administration, an effect that was not observed with the other treatment groups. The antibacterial effect with MSCs was due, in part, to their upregulation of the antibacterial protein lipocalin 2.
Conclusions: Treatment with MSCs enhanced survival and bacterial clearance in a mouse model of Gram-negative pneumonia. The bacterial clearance effect was due, in part, to the upregulation of lipocalin 2 production by MSCs