75 resultados para Vector quantization
Resumo:
Support vector machines (SVMs), though accurate, are not preferred in applications requiring high classification speed or when deployed in systems of limited computational resources, due to the large number of support vectors involved in the model. To overcome this problem we have devised a primal SVM method with the following properties: (1) it solves for the SVM representation without the need to invoke the representer theorem, (2) forward and backward selections are combined to approach the final globally optimal solution, and (3) a criterion is introduced for identification of support vectors leading to a much reduced support vector set. In addition to introducing this method the paper analyzes the complexity of the algorithm and presents test results on three public benchmark problems and a human activity recognition application. These applications demonstrate the effectiveness and efficiency of the proposed algorithm.
--------------------------------------------------------------------------------
Resumo:
A bit-level systolic array for computing matrix x vector products is described. The operation is carried out on bit parallel input data words and the basic circuit takes the form of a 1-bit slice. Several bit-slice components must be connected together to form the final result, and authors outline two different ways in which this can be done. The basic array also has considerable potential as a stand-alone device, and its use in computing the Walsh-Hadamard transform and discrete Fourier transform operations is briefly discussed.
Resumo:
A new method is proposed which reduces the size of the memory needed to implement multirate vector quantizers. Investigations have shown that the performance of the coders implemented using this approach is comparable to that obtained from standard systems. The proposed method can therefore be used to reduce the hardware required to implement real-time speech coders.
Resumo:
In recent years, gradient vector flow (GVF) based algorithms have been successfully used to segment a variety of 2-D and 3-D imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods may lead to biased segmentation results. In this paper, we propose MSGVF, a mean shift based GVF segmentation algorithm that can successfully locate the correct borders. MSGVF is developed so that when the contour reaches equilibrium, the various forces resulting from the different energy terms are balanced. In addition, the smoothness constraint of image pixels is kept so that over- or under-segmentation can be reduced. Experimental results on publicly accessible datasets of dermoscopic and optic disc images demonstrate that the proposed method effectively detects the borders of the objects of interest.
Resumo:
In most previous research on distributional semantics, Vector Space Models (VSMs) of words are built either from topical information (e.g., documents in which a word is present), or from syntactic/semantic types of words (e.g., dependency parse links of a word in sentences), but not both. In this paper, we explore the utility of combining these two representations to build VSM for the task of semantic composition of adjective-noun phrases. Through extensive experiments on benchmark datasets, we find that even though a type-based VSM is effective for semantic composition, it is often outperformed by a VSM built using a combination of topic- and type-based statistics. We also introduce a new evaluation task wherein we predict the composed vector representation of a phrase from the brain activity of a human subject reading that phrase. We exploit a large syntactically parsed corpus of 16 billion tokens to build our VSMs, with vectors for both phrases and words, and make them publicly available.
Resumo:
In order to formalize and extend on previous ad-hoc analysis and synthesis methods a theoretical treatment using vector representations of directional modulation (DM) systems is introduced and used to achieve DM transmitter characteristics. An orthogonal vector approach is proposed which allows the artificial orthogonal noise concept derived from information theory to be brought to bear on DM analysis and synthesis. The orthogonal vector method is validated and discussed via bit error rate (BER) simulations.
Resumo:
Directional Modulation (DM) is a recently proposed technique for securing wireless communication. In this paper we point out that modulation-directionality is a consequence of varying the beamforming network, either in baseband or in the RF stage, at the information rate In order to formalize and extend on previous analysis and synthesis methods a new theoretical treatment using vector representations of directional modulation (DM) systems is introduced and used to obtain the necessary and sufficient con
Resumo:
We present an algebro-geometric approach to a theorem on finite domination of chain complexes over a Laurent polynomial ring. The approach uses extension of chain complexes to sheaves on the projective line, which is governed by a K-theoretical obstruction.
Resumo:
In semiconductor fabrication processes, effective management of maintenance operations is fundamental to decrease costs associated with failures and downtime. Predictive Maintenance (PdM) approaches, based on statistical methods and historical data, are becoming popular for their predictive capabilities and low (potentially zero) added costs. We present here a PdM module based on Support Vector Machines for prediction of integral type faults, that is, the kind of failures that happen due to machine usage and stress of equipment parts. The proposed module may also be employed as a health factor indicator. The module has been applied to a frequent maintenance problem in semiconductor manufacturing industry, namely the breaking of the filament in the ion-source of ion-implantation tools. The PdM has been tested on a real production dataset. © 2013 IEEE.