110 resultados para Trail-induced apoptosis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The current study was undertaken to characterize the effect of anti-metabolites on inducing CXCL8 signaling and determining whether the constitutive and/or drug-induced CXCL8 signaling in metastatic prostate cancer (CaP) cells modulates their sensitivity to this class of agent.

Methods: The response of metastatic CaP cells to 5-Fluorouracil (5-FU), Pemetrexed or Tomudex was determined using cell count assays, flow cytometry and PARP cleavage analysis. Quantitative-PCR, ELISA and immunoblots were employed to determine effects of drugs or CXCL8 administration on target gene/protein expression.

Results: Administration of 5-FU but not pemetrexed potentiated CXCL8 secretion and increased CXCR1 and CXCR2 gene expression in metastatic PC3 cells. Consistent with this, the inhibition of CXCL8 signaling using a CXCR2 antagonist, AZ10397767, increased the cytotoxicity of 5-FU by 4-fold (P,0.001), and increased 5-FU-induced apoptosis in PC3 cells (P,0.01). In contrast, while administration of AZ10397767 had no effect on the sensitivity of pemetrexed, the CXCR2 antagonist exerted the greatest effect in increasing the sensitivity of PC3 cells to Tomudex, a directed thymidylate synthase (TS) inhibitor. Subsequent experiments confirmed that administration of recombinant human CXCL8 increased TS expression, a response mediated in part by the CXCR2 receptor. Moreover, siRNA-mediated knockdown of the CXCL8-target gene Bcl-2 increased the sensitivity of PC3 cells to 5-FU.

Conclusions: CXCL8 signaling provides a selective resistance of metastatic prostate cancer cells to specific anti-metabolites by promoting a target-associated resistance, in addition to underpinning an evasion of treatment-induced apoptosis. © 2012 Wilson et al.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

X-box binding protein 1 (XBP1) is a key signal transducer in endoplasmic reticulum stress response, and its potential role in the atherosclerosis development is unknown. This study aims to explore the impact of XBP1 on maintaining endothelial integrity related to atherosclerosis and to delineate the underlying mechanism. We found that XBP1 was highly expressed at branch points and areas of atherosclerotic lesions in the arteries of ApoE(-/-) mice, which was related to the severity of lesion development. In vitro study using human umbilical vein endothelial cells (HUVECs) indicated that disturbed flow increased the activation of XBP1 expression and splicing. Overexpression of spliced XBP1 induced apoptosis of HUVECs and endothelial loss from blood vessels during ex vivo cultures because of caspase activation and down-regulation of VE-cadherin resulting from transcriptional suppression and matrix metalloproteinase-mediated degradation. Reconstitution of VE-cadherin by Ad-VEcad significantly increased Ad-XBP1s-infected HUVEC survival. Importantly, Ad-XBP1s gene transfer to the vessel wall of ApoE(-/-) mice resulted in development of atherosclerotic lesions after aorta isografting. These results indicate that XBP1 plays an important role in maintaining endothelial integrity and atherosclerosis development, which provides a potential therapeutic target to intervene in atherosclerosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pyrrolo-1,5-benzoxazepine-15 (PBOX-15) is a novel microtubule depolymerization agent that induces cell cycle arrest and subsequent apoptosis in a number of cancer cell lines. Chronic lymphocytic leukemia (CLL) is characterized by clonal expansion of predominately nonproliferating mature B cells. Here, we present data suggesting PBOX-15 is a potential therapeutic agent for CLL. We show activity of PBOX-15 in samples taken from a cohort of CLL patients (n = 55) representing both high-risk and low-risk disease. PBOX-15 exhibited cytotoxicity in CLL cells (n = 19) in a dose-dependent manner, with mean IC(50) of 0.55 mu mol/L. PBOX-15 significantly induced apoptosis in CLL cells (n = 46) including cells with poor prognostic markers: unmutated IgV(II) genes, CD38 and zeta-associated protein 70 (ZAP-70) expression, and fludarabine-resistant cells with chromosomal deletions in 17p. In addition, PBOX-15 was more potent than fludarabine in inducing apoptosis in fludarabine-sensitive cells. Pharmacologic inhibition and small interfering RNA knockdown of caspase-8 significantly inhibited PBOX-15-induced apoptosis. Pharmacologic inhibition of c-jun NH(2)-terminal kinase inhibited PBOX-15-induced apoptosis in mutated IgV(II) and ZAP-70(-) CLL cells but not in unmutated IgV(II) and ZAP-70(+) cells. PBOX-15 exhibited selective cytotoxicity in CLL cells compared with normal hematopoietic cells. Our data suggest that PBOX-15 represents a novel class of agents that are toxic toward both high-risk and low-risk CLL cells. The need for novel treatments is acute in CLL, especially for the subgroup of patients with poor clinical outcome and drug-resistant disease. This study identifies a novel agent with significant clinical potential.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The risk of diabetic retinopathy is associated with the presence of both oxidative stress and toxic eicosanoids. Whether oxidative stress actually causes diabetic retinopathy via the generation of toxic eicosanoids, however, remains unknown. The aim of the present study was to determine whether tyrosine nitration of prostacyclin synthase (PGIS) contributes to retinal cell death in vitro and in vivo. Exposure of human retinal pericytes to heavily oxidized and glycated LDL (HOG-LDL), but not native forms of LDL (N-LDL), for 24 hours significantly increased pericyte apoptosis, accompanied by increased tyrosine nitration of PGIS and decreased PGIS activity. Inhibition of the thromboxane receptor or cyclooxygenase-2 dramatically attenuated HOG-LDL-induced apoptosis without restoring PGIS activity. Administration of superoxide dismutase (to scavenge superoxide anions) or L-N(G)-nitroarginine methyl ester (L-NAME, a nonselective nitric oxide synthase inhibitor) restored PGIS activity and attenuated pericyte apoptosis. In Akita mouse retinas, diabetes increased intraretinal levels of oxidized LDL and glycated LDL, induced PGIS nitration, enhanced apoptotic cell death, and impaired blood-retinal barrier function. Chronic administration of tempol, a superoxide scavenger, reduced intraretinal oxidized LDL and glycated LDL levels, PGIS nitration, and retina cell apoptosis, thereby preserving the integrity of blood-retinal barriers. In conclusion, oxidized LDL-mediated PGIS nitration and associated thromboxane receptor stimulation might be important in the initiation and progression of diabetic retinopathy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pericyte loss is a cardinal feature of early diabetic retinopathy. We previously reported that highly oxidized-glycated low density lipoprotein (HOG-LDL) induces pericyte apoptosis in vitro. In this study, we investigated the role of the mitogen-activated protein kinase (MAPK) signaling pathways in HOG-LDL-induced apoptosis in human pericytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Death Receptor 5 (DR5) is a pro-apoptotic cell-surface receptor that is a potential therapeutic target in cancer. Despite the potency of DR5-targeting agents in preclinical models, the translation of these effects into the clinic remains disappointing. Herein, we report an alternative approach to exploiting DR5 tumor expression using antibody-targeted, chemotherapy-loaded nanoparticles. We describe the development of an optimized polymer-based nanotherapeutic incorporating both a functionalized polyethylene glycol (PEG) layer and targeting antibodies to limit premature phagocytic clearance whilst enabling targeting of DR5-expressing tumor cells. Using the HCT116 colorectal cancer model, we show that following binding to DR5, the nanoparticles activate caspase 8, enhancing the anti-tumor activity of the camptothecin payload both in vitro and in vivo. Importantly, the combination of nanoparticle-induced DR5 clustering with camptothecin delivery overcomes resistance to DR5-induced apoptosis caused by loss of BAX or overexpression of anti-apoptotic FLIP. This novel approach may improve the clinical activity of DR5-targeted therapeutics while increasing tumor-specific delivery of systemically toxic chemotherapeutics.Molecular Therapy (2014); doi:10.1038/mt.2014.137.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Secretory Leukocyte Protease Inhibitor (SLPI) is a serine protease inhibitor produced by epithelial and myeloid cells with anti-inflammatory properties. Research has shown that SLPI exerts its anti-inflammatory activity by directly binding to NF-κB DNA binding sites and, in so doing, prevents binding and subsequent transcription of proinflammatory gene expression. In the current study, we demonstrate that SLPI can inhibit TNF-α-induced apoptosis in U937 cells and peripheral blood monocytes. Specifically, SLPI inhibits TNF-α-induced caspase-3 activation and DNA degradation associated with apoptosis. We go on to show that this ability of SLPI to inhibit apoptosis is not dependent on its antiprotease activity as antiprotease deficient variants of SLPI can also inhibit TNF-α-induced apoptosis. This reduction in monocyte apoptosis may preserve monocyte function during inflammation resolution and promote infection clearance at mucosal sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The breast cancer susceptibility gene BRCA1 encodes a protein implicated in the cellular response to DNA damage, with postulated roles in homologous recombination as well as transcriptional regulation. To identify downstream target genes, we established cell lines with tightly regulated inducible expression of BRCA1. High-density oligonucleotide arrays were used to analyze gene expression profiles at various times following BRCA1 induction. A major BRCA1 target is the DNA damage-responsive gene GADD45. Induction of BRCA1 triggers apoptosis through activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), a signaling pathway potentially linked to GADD45 gene family members. The p53-independent induction of GADD45 by BRCA1 and its activation of JNK/SAPK suggest a pathway for BRCA1-induced apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although recent decades have seen an improved cure rate for newly diagnosed paediatric acute lymphoplastic leukaemia (ALL), the treatment options for adult ALL, T-cell ALL (T-ALL) and relapsed disease remain poor. We have developed a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds and established their anticancer efficacy in a variety of human tumour cell types. Here, we demonstrate that PBOX-15 inhibits cell growth, and induces G2/M cell cycle arrest and apoptosis in both T-ALL and B-cell ALL (B-ALL) cells. In addition, prior to PBOX-15-induced apoptosis, PBOX-15 decreases ALL cell adhesion, spreading and migration. Concurrently, PBOX-15 differentially down-regulates β1-, β2- and α4-integrin expression in ALL cells and significantly decreases integrin-mediated cell attachment. PBOX-15 interferes with the lateral mobility and clustering of integrins in both B-ALL and T-ALL cells. These data suggest that PBOX-15 is not only effective in inducing apoptosis in ALL cells, but also has the potential to disrupt integrin-mediated adhesion of malignant lymphocytes, which represents a novel avenue for regulating leukaemic cell homing and migration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BubR1 is a well-defined guardian of the mitotic spindle, initiating mitotic arrest in response to the lack of tension and/or chromosome alignment across the mitotic plate. However, the role of BubR1 in combretastatin-induced cell death remains unknown. In this study, we describe the effects of combretastatin A-4 (CA-4) and a synthetic cis-restricted 3,4-diaryl-2-azetidinone (ß-lactam) analogue (CA-432) on the modulation and phosphorylation of BubR1 in human cervical cancer-derived cells. We demonstrate that CA-4 and CA-432 depolymerise the microtubular network of human cervical carcinoma-derived cells. Both compounds induced the disassembly of the microtubules and the loss of microtubule tension led to the early phosphorylation of BubR1 and the late cleavage of BubR1. The phosphorylation of BubR1 correlated with the onset of G2M cell cycle arrest whilst the cleavage of BubR1 coincided with apoptosis induced by the combretastatins. The combretastatin-induced apoptosis and the BubR1 cleavage were caspase-dependent. In vitro enzyme digests demonstrated that combretastatin-activated BubR1 is a substrate for caspase-3. Gene silencing of BubR1 with small interfering RNA severely compromised combretastatin-induced G2M cell cycle arrest with a corresponding increase in the formation of polyploid cells in both cervical and breast cancer-derived cells. In summary, BubR1 is required to maintain the G2M arrest and limit the formation of polyploid cells in response to continued combretastatin exposure. Moreover, substitution of the ethylene bridge with 3,4-diaryl-2-azetidinone did not alter the tubulin depolymerising properties or the subsequent mitotic spindle checkpoint response to CA-4 in human cancer cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Advanced hormone-refractory prostate cancer is associated with poor prognosis and limited treatment options. Members of the pyrrolo-1,5-benzoxazepine (PBOX) family of compounds exhibit anti-cancer properties in cancer cell lines (including multi-drug resistant cells), ex vivo patient samples and in vivo mouse tumour models with minimal toxicity to normal cells. Recently, they have also been found to possess anti-angiogenic properties in vitro. However, both the apoptotic pathways and the overall extent of the apoptotic response induced by PBOX compounds tend to be cell-type specific. Since the effect of the PBOX compounds on prostate cancer has not yet been elucidated, the purpose of this study was to investigate if PBOX compounds induce anti-proliferative effects on hormone-refractory prostate cancer cells. We examined the effect of two representative PBOX compounds, PBOX-6 and PBOX-15, on the androgen-independent human prostate adenocarcinoma cell line, PC3. PBOX-6 and -15 displayed anti-proliferative effects on PC3 cells, mediated initially through a sustained G2/M arrest. G2/M arrest, illustrated as DNA tetraploidy, was accompanied by microtubule depolymerisation and phosphorylation of anti-apoptotic proteins Bcl-2 and Bcl-xL and the mitotic spindle checkpoint protein BubR1. Phosphorylation of BubR1 is indicative of an active mitotic checkpoint and results in maintenance of cell cycle arrest. G2/M arrest was followed by apoptosis illustrated by DNA hypoploidy and PARP cleavage and was accompanied by degradation of BubR1, Bcl-2 and Bcl-xL. Furthermore, sequential treatment with the CDK1-inhibitor, flavopiridol, synergistically enhanced PBOX-induced apoptosis. In summary, this in vitro study indicates that PBOX compounds may be useful alone or in combination with other agents in the treatment of hormone-refractory prostate cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evasion of DNA damage-induced cell death, via mutation of the p53 tumor suppressor or overexpression of prosurvival Bcl-2 family proteins, is a key step toward malignant transformation and therapeutic resistance. We report that depletion or acute inhibition of checkpoint kinase 1 (Chk1) is sufficient to restore ?-radiation-induced apoptosis in p53 mutant zebrafish embryos. Surprisingly, caspase-3 is not activated prior to DNA fragmentation, in contrast to classical intrinsic or extrinsic apoptosis. Rather, an alternative apoptotic program is engaged that cell autonomously requires atm (ataxia telangiectasia mutated), atr (ATM and Rad3-related) and caspase-2, and is not affected by p53 loss or overexpression of bcl-2/xl. Similarly, Chk1 inhibitor-treated human tumor cells hyperactivate ATM, ATR, and caspase-2 after ?-radiation and trigger a caspase-2-dependent apoptotic program that bypasses p53 deficiency and excess Bcl-2. The evolutionarily conserved "Chk1-suppressed" pathway defines a novel apoptotic process, whose responsiveness to Chk1 inhibitors and insensitivity to p53 and BCL2 alterations have important implications for cancer therapy. © 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

α1-antitrypsin (α1-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of α1-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z α1-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved.

Control, M variant α1-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-κB activation and induced expression of a selection of pro- and anti-apoptotic genes.

Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-κB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-κB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies.

The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of the calcium binding protein, Calbindin 2 (CALB2), in regulating the response of colorectal cancer (CRC) cells to 5-Fluorouracil (5-FU) was investigated. Real-time RT-PCR and Western blot analysis revealed that CALB2 mRNA and protein expression were down-regulated in p53 wild-type and p53 null isogenic HCT116 CRC cell lines following 48 h and 72 h 5-FU treatment. Moreover, 5-FU-induced apoptosis was significantly reduced in HCT116 and LS174T CRC cell lines in which CALB2 expression had been silenced. Further investigation revealed that CALB2 translocated to the mitochondria following 5-FU treatment and that 5-FU-induced loss of mitochondrial membrane potential (Delta psi(m)) was abrogated in CALB2-silenced cells. Furthermore, CALB2 silencing decreased 5-FU-induced cytochrome c and smac release from the mitochondria and also decreased 5-FU-induced activation of caspases 9 and 3/7. Of note, co-silencing of XIAP overcame 5-FU resistance in CALB2-silenced cells. Collectively, these results suggest that following 5-FU treatment in CRC cell lines, CALB2 is involved in apoptosis induction through the intrinsic mitochondrial pathway. This indicates that CALB2 may be an important mediator of 5-FU-induced cell death. Moreover, down-regulation of CALB2 in response to 5-FU may represent an intrinsic mechanism of resistance to this anti-cancer drug.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We characterized Fas immunoreactivity, functionality and its role in the response to mitomycin-C (MMC) chemotherapy in vitro in cell lines and in vivo in bladder washings from 23 transitional cell carcinoma of the bladder (TCCB) patients, harvested prior to and during MMC intravesical treatment. Having established the importance of functional Fas, we investigated the methylation and exon 9 mutation as mechanisms of Fas silencing in TCCB. For the first time, we report p53 up-regulation in 9/14 and Fas up-regulation in 7/9 TCCB patients during intravesical MMC treatment. Fas immunoreactivity was strong in the TCCB cell line T24 and in 17/20 (85%) tumor samples from patients with advanced TCCB. T24 and HT1376 cells were resistant to MMC and recombinant Fas ligand, whilst RT4 cells were responsive to Fas ligand and MMC. Using RT4 cells as a model, siRNA targeting p53 significantly reduced MMC-induced p53 and Fas up-regulation and stable DN-FADD transfection decreased MMC-induced apoptosis, suggesting that functional Fas enhances chemotherapy responses in a p53-dependent manner. In HT1376 cells, 5-aza-2-deoxycytidine (12 µM) induced Fas immunoreactivity and reversed methylation at CpG site -548 within the Fas promoter. This site was methylated in 13/24 (54%) TCCB patient samples assessed using Methylation-Specific Polymerase Chain Reaction. There was no methylation at either the p53 enhancer region within the first intron or at the SP-1 binding region in the promoter and no mutation within exon 9 in tumor DNA extracted from 38 patients. Methylation at CpG site -548 is a potential target for demethylating drugs.