53 resultados para System level energy management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing "just-the-right" amount of quality and robustness. This is achieved, by taking into consideration block level interactions and ensuring that under any change of operating conditions, only the "less-crucial" computations, that contribute less to block/system output quality, are affected. The proposed approach applies unequal error protection to various blocks of a system-logic and memory-and spans multiple layers of design hierarchy-algorithm, architecture and circuit. The design methodology when applied to a multimedia subsystem shows large power benefits ( up to 69% improvement in power consumption) at reasonable image quality while tolerating errors introduced due to VOS, process variations, and channel noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an end-user model for a domestic pervasive computing platform formed by regular home objects. The platform does not rely on pre-planned infrastructure; instead, it exploits objects that are already available in the home and exposes their joint sensing, actuating and computing capabilities to home automation applications. We advocate an incremental process of the platform formation and introduce tangible, object-like artifacts for representing important platform functions. One of those artifacts, the application pill, is a tiny object with a minimal user interface, used to carry the application, as well as to start and stop its execution and provide hints about its operational status. We also emphasize streamlining the user's interaction with the platform. The user engages any UI-capable object of his choice to configure applications, while applications issue notifications and alerts exploiting whichever available objects can be used for that purpose. Finally, the paper briefly describes an actual implementation of the presented end-user model. © (2010) by International Academy, Research, and Industry Association (IARIA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union has set a target to achieve a 10% reduction in greenhouse gas emissions by 2020 relative to 2005 levels. This target is binding in all the European Union member states. If electric vehicle issues are overcome then the challenge is to use as much renewable energy as possible to achieve this target. In this paper, the impacts of electric vehicle charged in the all-Ireland single wholesale electricity market after the 2020 deadline passes is investigated using a power system dispatch model. For the purpose of this work it is assumed that a 10% electric vehicle target in the Republic of Ireland is not achieved, but instead 8% is reached by 2025 considering the slow market uptake of electric vehicles. Our experimental study shows that the increasing penetration of EVs could contribute to approach the target of the EU and Ireland government on emissions reduction, regardless of different charging scenarios. Furthermore, among various charging scenarios, the off-peak charging is the best approach, contributing 2.07% to the target of 10% reduction of Greenhouse gas emissions by 2025.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models of complex systems with n components typically have order n<sup>2</sup> parameters because each component can potentially interact with every other. When it is impractical to measure these parameters, one may choose random parameter values and study the emergent statistical properties at the system level. Many influential results in theoretical ecology have been derived from two key assumptions: that species interact with random partners at random intensities and that intraspecific competition is comparable between species. Under these assumptions, community dynamics can be described by a community matrix that is often amenable to mathematical analysis. We combine empirical data with mathematical theory to show that both of these assumptions lead to results that must be interpreted with caution. We examine 21 empirically derived community matrices constructed using three established, independent methods. The empirically derived systems are more stable by orders of magnitude than results from random matrices. This consistent disparity is not explained by existing results on predator-prey interactions. We investigate the key properties of empirical community matrices that distinguish them from random matrices. We show that network topology is less important than the relationship between a species’ trophic position within the food web and its interaction strengths. We identify key features of empirical networks that must be preserved if random matrix models are to capture the features of real ecosystems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DRAM technology faces density and power challenges to increase capacity because of limitations of physical cell design. To overcome these limitations, system designers are exploring alternative solutions that combine DRAM and emerging NVRAM technologies. Previous work on heterogeneous memories focuses, mainly, on two system designs: PCache, a hierarchical, inclusive memory system, and HRank, a flat, non-inclusive memory system. We demonstrate that neither of these designs can universally achieve high performance and energy efficiency across a suite of HPC workloads. In this work, we investigate the impact of a number of multilevel memory designs on the performance, power, and energy consumption of applications. To achieve this goal and overcome the limited number of available tools to study heterogeneous memories, we created HMsim, an infrastructure that enables n-level, heterogeneous memory studies by leveraging existing memory simulators. We, then, propose HpMC, a new memory controller design that combines the best aspects of existing management policies to improve performance and energy. Our energy-aware memory management system dynamically switches between PCache and HRank based on the temporal locality of applications. Our results show that HpMC reduces energy consumption from 13% to 45% compared to PCache and HRank, while providing the same bandwidth and higher capacity than a conventional DRAM system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.