69 resultados para Synthetic Hybrids
Resumo:
Species introductions are considered one of the major drivers of biodiversity loss via ecological interactions and genetic admixture with local fauna. We examined two well-recognized fish species, native whitefish (Coregonus lavaretus) and introduced vendace (Coregonus albula), as well as their morphological hybrids in a single lake to test for selection against hybrids and backcrosses in the wild. A representative random subsample of 693 individuals (27.8%) was taken from the total catch of coregonids. This subsample was examined with the aim to select c. 50 individuals of pure whitefish (n = 52), pure vendace (n = 55) and putative hybrid (n = 19) for genetic analyses. The subsequent microsatellites and mitochondrial (mt) DNA analyses provided compelling evidence of hybridization and introgression. Of the 126 fish examined, four were found to be F-1, 14 backcrosses to whitefish and seven backcrosses to vendace. The estimates of historical gene flow suggested higher rates from introduced vendace into native whitefish than vice versa, whereas estimates of contemporary gene flow were equal. Mitochondrial introgression was skewed, with 18 backcrosses having vendace mtDNA and only three with whitefish mtDNA. Hybrids and backcrosses had intermediate morphology and niche utilization compared with parental species. No evidence of selection against hybrids or backcrosses was apparent, as both hybrid and backcross growth rates and fecundities were high. Hybrids (F-1) were only detected in 2 year-classes, suggesting temporal variability in mating between vendace and whitefish. However, our data show that hybrids reached sexual maturity and reproduced actively, with backcrosses recorded from six consecutive year-classes, whereas no F-2 individuals were found. The results indicate widespread introgression, as 10.8% of coregonids were estimated to be backcrosses.
Resumo:
A new formal total synthesis of (-)-echinosporin has been developed based upon the Padwa [3 + 2]-cycloadditive elimination reaction of allenylsulfone 4 with the D-glucose-derived enone 14 which provides cycloadduct 12.
Resumo:
In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and ? -ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.
Resumo:
Ultraviolet and X-ray observations show evidence of outflowing gas around many active galactic nuclei. It has been proposed that some of these outflows are driven off gas infalling towards the central supermassive black hole. We perform radiative transfer calculations to compute the gas ionization state and the emergent X-ray spectra for both two- and three-dimensional (3D) hydrodynamical simulations of this outflow-from-inflow scenario. By comparison with observations, our results can be used to test the theoretical models and guide future numerical simulations. We predict both absorption and emission features, most of which are formed in a polar funnel of relatively dense (10 -10 g cm ) outflowing gas. This outflow causes strong absorption for observer orientation angles of ?35°. Particularly in 3D, the strength of this absorption varies significantly for different lines of sight owing to the fragmentary structure of the gas flow. Although infalling material occupies a large fraction of the simulation volume, we do not find that it imprints strong absorption features in the X-ray spectra since the ionization state is predicted to be very high. Thus, an absence of observed inflow absorption features does not exclude the models. The main spectroscopic consequence of the infalling gas is a Compton-scattered continuum component that partially re-fills the absorption features caused by the outflowing polar funnel. Fluorescence and scattering in the outflow are predicted to give rise to several emission features including a multicomponent Fe Ka emission complex for all observer orientations. For the hydrodynamical simulations considered, we predict both ionization states and column densities for the outflowing gas that are too high to be quantitatively consistent with well-observed X-ray absorption systems. Nevertheless, our results are qualitatively encouraging and further exploration of the model parameter space is warranted. Higher resolution hydrodynamic simulations are needed to determine whether the outflows fragment on scales unresolved in our current study, which may yield the denser lower ionization material that could reconcile the models and the observations. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
Resumo:
Mammalian group-II phospholipases A2 (PLA2) of inflammatory fluids display bactericidal properties, which are dependent on their enzymatic activity. This study shows that myotoxins II (Lys49) and III (Asp49), two group-II PLA2 isoforms from the venom of Bothrops asper, are lethal to a broad spectrum of bacteria. Since the catalytically inactive Lys49 myotoxin II isoform has similar bactericidal effects to its catalytically active Asp49 counterpart, a bactericidal mechanism that is independent of an intrinsic PLA2 activity is demonstrated. Moreover, a synthetic 13-residue peptide of myotoxin II, comprising residues 115-129 (common numbering system) near the C-terminal loop, reproduced the bactericidal effect of the intact protein. Following exposure to the peptide or the protein, accelerated uptake of the hydrophobic probe N-phenyl-N-naphthylamine was observed in susceptible but not in resistant bacteria, indicating that the lethal effect was initiated on the bacterial membrane. The outer membrane, isolated lipopolysaccharide (LPS), and lipid A of susceptible bacteria showed higher binding to the myotoxin II-(115-129)-peptide than the corresponding moieties of resistant strains. Bacterial LPS chimeras indicated that LPS is a relevant target for myotoxin II-(115-129)-peptide. When heterologous LPS of the resistant strain was present in the context of susceptible bacteria, the chimera became resistant, and vice versa. Myotoxin II represents a group-II PLA2 with a direct bactericidal effect that is independent of an intrinsic enzymatic activity, but adscribed to the presence of a short cluster of basic/hydrophobic amino acids near its C-terminal loop.
Resumo:
2-Deoxy-C-nucleosides are a subcategory of C-nucleosides that has not been explored extensively, largely because the synthesis is less facile. Flexible synthetic procedures giving access to 2-deoxy-C-nucleosides are therefore of interest. To exemplify the versatility and highlight the limitations of a synthetic route recently developed to that effect, the first synthesis of 2-deoxy benzamide riboside is reported. Biological properties of this novel C-nucleoside are also discussed. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Interspecific and intertribal somatic hybrids were obtained to study the composition and function of microtubules in hybrid plants. The amiprophosmethyl-resistant mutant Nicotiana plumbaginifolia L. was used as donor; canamycin-resistant mutants N. sylvestris L. and Atropa belladonna served as recipients. Cytogenetic analysis confirmed the hybrid nature of the clones selected. Immunoflourescent analysis showed that constitutions of mitotic spindles in regenerating protoplast, isolated from the hybrid NpAb-107 and the mutant N. plunbaginifolia, show no change after a 2-hour treatment with 5 mu M of amiprophosmethyl; in A. belladonna, the division spindle is completely destroyed under these conditions. Tubulin was isolated from the hybrid NpAb-107 and separated by two-dimensional electrophoresis. The results showed that NpAb-107 has the beta-tubulin isoform specific for N. plumbaginifolia in addition to all isoforms of A. belladonna.
Resumo:
Particle-in-cell (PIC) simulations of relativistic shocks are in principle capable of predicting the spectra of photons that are radiated incoherently by the accelerated particles. The most direct method evaluates the spectrum using the fields given by the Lienard-Wiechart potentials. However, for relativistic particles this procedure is computationally expensive. Here we present an alternative method that uses the concept of the photon formation length. The algorithm is suitable for evaluating spectra both from particles moving in a specific realization of a turbulent electromagnetic field or from trajectories given as a finite, discrete time series by a PIC simulation. The main advantage of the method is that it identifies the intrinsic spectral features and filters out those that are artifacts of the limited time resolution and finite duration of input trajectories.
Resumo:
With its origins in the trick films of the 1890s and early 1900s, British science fiction film has a long history. While Things to Come (1936) is often identified as significant for being written by H.G.Wells, one of the fathers of science fiction as a genre, the importance of the interactions between media in the development of British science fiction film are often set aside. This chapter examines the importance of broadcast media to film-making in Britain, focusing on the 1950s as a period often valourised in writings about American science fiction, to the detriment of other national expressions of the genre. This period is key to the development of the genre in Britain, however, with the establishment of television as a popular medium incorporating the development of domestic science fiction television alongside the import of American products, together with the spread of the very term ‘science fiction’ through books, pulps and comics as well as radio, television and cinema. It was also the time of a backlash against the perceived threat of American soft cultural power embodied in the attractive shine of science fiction with its promise of a bright technological future. In particular, this chapter examines the significance of the relationship between the BBC television and radio services and the film production company Hammer, which was responsible for multiple adaptations of BBC properties, including a number of science fiction texts. The Hammer adaptation of the television serial The Quatermass Experiment proved to be the first major success for the company, moving it towards its most famous identity as producer of horror texts, though often horror with an underlying scientific element, as with their successful series of Frankenstein films. This chapter thus argues that the interaction between film and broadcast media in relation to science fiction was crucial at this historical juncture, not only in helping promote the identities of filmmakers like Hammer, but also in supporting the identity of the BBC and its properties, and in acting as a nexus for the then current debates on taste and national identity.