83 resultados para Speed Violation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper outlines the use of phasor measurement unit (PMU) records to validate models of fixed speed induction generator (FSIG)-based wind farms during frequency transients. Wind turbine manufacturers usually create their own proprietary models which they can supply to power system utilities for stability studies, subject to confidentiality agreements. However, it is desirable to confirm the accuracy of supplied models with measurements from the particular installation, in order to assess their validity under real field conditions. This is prudent due to possible changes in control algorithms and design retrofits, not accurately reflected or omitted in the supplied model. One important aspect of such models, especially for smaller power systems with limited inertia, is their accuracy during system frequency transients. This paper, therefore, assesses the accuracy of FSIG models with regard to frequency stability, and hence validates a subset of the model dynamics. Such models can then be used with confidence to assess wider system stability implications. The measured and simulated response of a wind farm using doubly fed induction generator (DFIG) technology is also assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication and performance of the first bit-level systolic correlator array is described. The application of systolic array concepts at the bit level provides a simple and extremely powerful method for implementing high-performance digital processing functions. The resulting structure is highly regular, facilitating yield enhancement through fault-tolerant redundancy techniques and therefore ideally suited to implementation as a VLSI chip. The CMOS/SOS chip operates at 35 MHz, is fully cascadable and exhibits 64-stage correlation for 1-bit reference and 4-bit data. 7 refs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes data captured by a phasor measurement unit at a wind farm, employing two-speed induction generators, and investigates aspects of the control system's interaction with the power system. Composite superimposed transient events are proposed as a method to improve the quality of the analysis and reduce errors caused by unknowns, such as wind speed variation. A Mathworks SimPowerSystems model validates the inertia contribution of the wind farm, which is an important parameter in power systems with high wind penetration. Transients caused by turbine speed transitions are identified and explained. The analysis also highlights areas where wind farm control should be improved if useful inertia contribution is to be provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steady simulations were performed to investigate tip leakage flow and heat transfer characteristics on the rotor blade tip and casing in a single-stage gas turbine engine. A typical high-pressure gas turbine stage was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data under similar operating condition. The present numerical study focuses extensively on the effects of tip clearance heights and rotor rotational speeds on the blade tip and casing heat transfer characteristics. It was observed that the tip leakage flow structure is highly dependent on the height of the tip gap and the speed of the rotor. In all cases, the tip leakage flow was seen to separate and recirculate just around the corner of the pressure side of the blade tip. This region of re-circulating flow enlarges with increasing clearance heights. The separated leakage flow reattaches afterwards on the tip surface. Leakage flow reattachment was shown to enhance surface heat transfer at the tip. The interaction between tip leakage flow and secondary flows that is induced by the relative casing motion is found to significantly influence the blade tip and casing heat transfer distribution. A region of critical heat transfer exists on the casing near the blade tip leading edge and along the pressure-side edge for all the clearance heights that were investigated. At high rotation speed, the region of critical heat transfer tends to move towards the trailing edge due to the change in inflow angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the use of probabilistic noiseless amplification in entangled coherent state-based schemes for the test of quantum nonlocality provides substantial advantages. The threshold amplitude to falsify a Bell-CHSH nonlocality test, in fact, is significantly reduced when amplification is embedded into the test itself. Such a beneficial effect holds also in the presence of detection inefficiency. Our study helps in affirming noiseless amplification as a valuable tool for coherent information processing and the generation of strongly nonclassical states of bosonic systems.