89 resultados para Snp
Resumo:
Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P?=?1.2×10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P?=?2.0×10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-ß1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P?=?2.1×10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
Resumo:
We genotyped 2,861 cases of primary biliary cirrhosis (PBC) from the UK PBC Consortium and 8,514 UK population controls across 196,524 variants within 186 known autoimmune risk loci. We identified 3 loci newly associated with PBC (at P <5 × 10(-8)), increasing the number of known susceptibility loci to 25. The most associated variant at 19p12 is a low-frequency nonsynonymous SNP in TYK2, further implicating JAK-STAT and cytokine signaling in disease pathogenesis. An additional five loci contained nonsynonymous variants in high linkage disequilibrium (LD; r(2) > 0.8) with the most associated variant at the locus. We found multiple independent common, low-frequency and rare variant association signals at five loci. Of the 26 independent non-human leukocyte antigen (HLA) signals tagged on the Immunochip, 15 have SNPs in B-lymphoblastoid open chromatin regions in high LD (r(2) > 0.8) with the most associated variant. This study shows how data from dense fine-mapping arrays coupled with functional genomic data can be used to identify candidate causal variants for functional follow-up.
Resumo:
Alzheimer's disease (AD) is characterised by the extensive deposition of amyloid beta (Aß) within the parenchyma and vasculature of the brain. It is hypothesised that a dysfunction in Aß degradation and/or its removal from the brain may result in accumulation as plaques. Low density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional receptor shown to be involved in cholesterol metabolism but also the removal of Aß from the brain. Its ability to transport Aß from the brain to the periphery has made it an attractive candidate for involvement in Alzheimer's disease (AD). We have assessed the frequencies of 9 tag- SNPs and the commonly studied synonymous SNP within exon 3 (rs1799986) in a multi-centre AD/control cohort and performed haplotype analysis. We found no evidence from a combined total of 412 controls and 1057 AD patients to support the involvement of LRP-1 variation, including the most commonly studied variant in rs1799986 in conferring genetic susceptibility to increased risk of AD.
Resumo:
The ß-amyloid peptide may play a central role in Alzheimer's disease (AD) pathogenesis. We have evaluated variants in seven Aß-degrading genes (ACE, ECE1, ECE2, IDE, MME, PLAU, and TF) for association with AD risk in the Genetic and Environmental Risk in Alzheimer's Disease Consortium 1 (GERAD1) cohort, and with three cognitive phenotypes in the Lothian Birth Cohort 1936 (LBC1936), using 128 and 121 SNPs, respectively. In GERAD1, we identified a significant association between a four-SNP intragenic ECE1 haplotype and risk of AD in individuals that carried at least one APOE e4 allele (P = 0.00035, odds ratio = 1.61). In LBC1936, we identified a significant association between a different two-SNP ECE1 intragenic haplotype and non-verbal reasoning in individuals lacking the APOE e4 allele (P = 0.00036, ß = -0.19). Both results showed a trend towards significance after permutation (0.05 <P <0.10). A follow-up cognitive genetic study evaluated the association of ECE1 SNPs in three additional cohorts of non-demented older people. Meta-analysis of the four cohorts identified the significant association (Z <0.05) of SNPs in the ECE-1b promoter with non-verbal reasoning scores, particularly in individuals lacking the APOE e4 allele. Our genetic findings are not wholly consistent. Nonetheless, the AD associated intronic haplotype is linked to the 338A variant of known ECE1b promoter variant, 338C>A (rs213045). We observed significantly less expression from the 338A variant in two human neuroblastoma cell lines and speculate that this promoter may be subject to tissue-specific regulation.
Resumo:
Genetics plays a crucial role in human aging with up to 30% of those living to the mid-80s being determined by genetic variation. Survival to older ages likely entails an even greater genetic contribution. There is increasing evidence that genes implicated in age-related diseases, such as cancer and neuronal disease, play a role in affecting human life span. We have selected the 10 most promising late-onset Alzheimer's disease (LOAD) susceptibility genes identified through several recent large genome-wide association studies (GWAS). These 10 LOAD genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP, and EPHA1) have been tested for association with human aging in our dataset (1385 samples with documented age at death [AAD], age range: 58-108 years; mean age at death: 80.2) using the most significant single nucleotide polymorphisms (SNPs) found in the previous studies. Apart from the APOE locus (rs2075650) which showed compelling evidence of association with risk on human life span (p = 5.27 × 10(-4)), none of the other LOAD gene loci demonstrated significant evidence of association. In addition to examining the known LOAD genes, we carried out analyses using age at death as a quantitative trait. No genome-wide significant SNPs were discovered. Increasing sample size and statistical power will be imperative to detect genuine aging-associated variants in the future. In this report, we also discuss issues relating to the analysis of genome-wide association studies data from different centers and the bioinformatic approach required to distinguish spurious genome-wide significant signals from real SNP associations.
Resumo:
We conducted a genome-wide association study of male breast cancer comprising 823 cases and 2,795 controls of European ancestry, with validation in independent sample sets totaling 438 cases and 474 controls. A SNP in RAD51B at 14q24.1 was significantly associated with male breast cancer risk (P = 3.02 × 10(-13); odds ratio (OR) = 1.57). We also refine association at 16q12.1 to a SNP within TOX3 (P = 3.87 × 10(-15); OR = 1.50).
Resumo:
PURPOSE. Myopia is a complex trait affected by both genetic and environmental factors. High myopia is associated with increased risk of sight-threatening eye disorders such as retinal detachment. The purpose of this genome-wide association study was to identify susceptibility genes contributing to high myopia in the French population. METHODS. High myopic cases were genotyped using Affymetrix SNP 6.0 chips and population controls were selected from the GABRIEL French dataset in which samples were genotyped by Illumina Human610 quad array. The association study was conducted using 152,234 single nucleotide polymorphisms that were present on both manufacturers' chips in 192 high myopic cases and 1064 controls to identify associated regions. Imputation was performed on peak regions. RESULTS. Associations were found at known myopia locus MYP10 on chromosome 8p23 and MYP15 on chromosome 10q21.1. Rs189798 (8p23) and rs10825992 (10q21.1) showed the strongest associations in these regions (P=6.32x10-7 and P=2.17x10-5, respectively). The imputed results at 8p23 showed 2 peaks of interest. The first spanned 30kb including rs189798 between MIR4660 and PPP1R3B with the most significant association at rs17155227 (P=1.07x10-10). The second novel peak was 4kb in length, encompassing MIR124-1 and the MSRA gene, with the strongest association at rs55864141 (P=1.30x10-7). The peak of imputed data at 10q21.1 was 70kb in length between ZWINT and MIR3924, with rs3107503 having the lowest P value (P=1.54x10-7). CONCLUSION. We provide evidence for the association of MYP10 at 8p23 and MYP15 at 10p21.1 with high myopia in the French population and refine these regions of association.
Resumo:
This article explores how stateless nationalist parties in the ‘Celtic periphery’ of Scotland and Northern Ireland have used Europe to advance their territorial projects. Despite vastly different historical, political and social contexts, the Scottish National Party and Northern Ireland's Social Democratic and Labour Party have both advanced a pro-European, social democratic discourse that emphasises the importance of Europe as a framework for constitutional reform and shared sovereignty. However, in recent years the parties have diverged on Europe. While the SDLP has continued its principled commitment to further integration, the SNP has articulated an increased criticism of the supranational project. This divergence in party attitudes reveals the extent to which the pro-European dimension of Celtic nationalism is ideological or opportunistic.
Resumo:
Single nucleotide polymorphisms (SNPs) are predicted to supersede microsatellites as the marker of choice for population genetic studies in the near future. To date, however, very few studies have directly compared both marker systems in natural populations, particularly in non-model organisms. In the present study, we compared the utility of SNPs and microsatellites for population genetic analysis of the red seaweed Chondrus crispus (Florideophyceae). Six SNP loci yielded very different patterns of intrapopulation genetic diversity compared to those obtained using seven moderately (mean 5.2 alleles) polymorphic microsatellite loci, although Bayesian clustering analysis gave largely congruent results between the two marker classes. A weak but significant pattern of isolation-by-distance was observed across scales from a few hundred metres to approximately 200?km using the combined SNP and microsatellite data set of 13 loci. Over larger scales, however, there was little correlation between genetic divergence and geographical distance. Our findings suggest that even a moderate number of SNPs is sufficient to determine patterns of genetic diversity across natural populations, and also highlight the fact that patterns of genetic variation in seaweeds arise through a complex interplay of short- and long-term natural processes, as well as anthropogenic influence.
Resumo:
Objective: The Schizophrenia Psychiatric Genome-wide Association (GWAS) Consortium recently reported on five novel schizophrenia susceptibility loci. The most significant finding mapped to a micro-RNA, MIR-137, which may be involved in regulating the function of other schizophrenia and bipolar disorder susceptibility genes. Method: We genotyped 821 patients with confirmed DSM-IV diagnoses of schizophrenia, bipolar affective disorder I and schizoaffective disorder for the risk SNP (rs1625579) and investigated the clinical profiles of risk allele carriers using a within-case design. We also assessed neurocognitive performance in a subset of cases (n=399) and controls (n=171). Results: Carriers of the risk allele had lower scores for an OPCRIT-derived positive symptom factor (p=0.04) and lower scores on a lifetime measure of psychosis incongruity (p=0.017). Risk allele carriers also had more cognitive deficits involving episodic memory and attentional control. Conclusion: This is the first evidence that the MIR-137 risk variant may be associated with a specific subgroup of psychosis patients. Although the effect of this single SNP was not clinically relevant, investigation of the impact of carrying multiple risk SNPs in the MIR-137 regulatory network on diagnosis and illness profile may be warranted. © 2012 Elsevier Ireland Ltd.
Resumo:
Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate the understanding of AMD biology and help design new therapies, we executed a collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 loci associated at P <5 × 10(-8). These loci show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include seven loci with associations reaching P <5 × 10(-8) for the first time, near the genes COL8A1-FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9 and B3GALTL. A genetic risk score combining SNP genotypes from all loci showed similar ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD.
Resumo:
Objective: To investigate association of scavenger receptor class B, member 1 (SCARB1) genetic variants with serum carotenoid levels of lutein (L) and zeaxanthin (Z) and macular pigment optical density (MPOD).
Design: A cross-sectional study of healthy adults aged 20 to 70.
Participants: We recruited 302 participants after local advertisement.
Methods: We measured MPOD by customized heterochromatic flicker photometry. Fasting blood samples were taken for serum L and Z measurement by high-performance liquid chromatography and lipoprotein analysis by spectrophotometric assay. Forty-seven single nucleotide polymorphisms (SNPs) across SCARB1 were genotyped using Sequenom technology. Association analyses were performed using PLINK to compare allele and haplotype means, with adjustment for potential confounding and correction for multiple comparisons by permutation testing. Replication analysis was performed in the TwinsUK and Carotenoids in Age-Related Eye Disease Study (CAREDS) cohorts.
Main Outcome Measures: Odds ratios for MPOD area, serum L and Z concentrations associated with genetic variations in SCARB1 and interactions between SCARB1 and gender.
Results: After multiple regression analysis with adjustment for age, body mass index, gender, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, smoking, and dietary L and Z levels, 5 SNPs were significantly associated with serum L concentration and 1 SNP with MPOD (P<0.01). Only the association between rs11057841 and serum L withstood correction for multiple comparisons by permutation testing (P<0.01) and replicated in the TwinsUK cohort (P = 0.014). Independent replication was also observed in the CAREDS cohort with rs10846744 (P = 2×10-4), an SNP in high linkage disequilibrium with rs11057841 (r2 = 0.93). No interactions by gender were found. Haplotype analysis revealed no stronger association than obtained with single SNP analyses.
Conclusions: Our study has identified association between rs11057841 and serum L concentration (24% increase per T allele) in healthy subjects, independent of potential confounding factors. Our data supports further evaluation of the role for SCARB1 in the transport of macular pigment and the possible modulation of age-related macular degeneration risk through combating the effects of oxidative stress within the retina.
Financial Disclosure(s): Proprietary or commercial disclosures may be found after the references. Ophthalmology 2013;120:1632–1640 © 2013 by the American Academy of Ophthalmology.
Resumo:
Caveolae are plasma membrane structures formed from a complex of the proteins caveolin-1 and caveolin-2. Caveolae interact with pro-inflammatory cytokines and are dysregulated in fibrotic disease. Although caveolae are present infrequently in healthy kidneys, they are abundant during kidney injury. An association has been identified between a CAV1 gene variant and long term kidney transplant survival. Chronic, gradual decline in transplant function is a persistent problem in kidney transplantation. The aetiology of this is diverse but fibrosis within the transplanted organ is the common end point. This study is the first to investigate the association of CAV2 gene variants with kidney transplant outcomes. Genomic DNA from donors and recipients of 575 kidney transplants performed in Belfast was investigated for common variation in CAV2 using a tag SNP approach. The CAV2 SNP rs13221869 was nominally significant for kidney transplant failure. Validation was sought in an independent group of kidney transplant donors and recipients from Dublin, Ireland using a second genotyping technology. Due to the unexpected absence of rs13221869 from this cohort, the CAV2 gene was resequenced. One novel SNP and a novel insertion/deletion in CAV2 were identified; rs13221869 is located in a repetitive region and was not a true variant in resequenced populations. CAV2 is a plausible candidate gene for association with kidney transplant outcomes given its proximity to CAV1 and its role in attenuating fibrosis. This study does not support an association between CAV2 variation and kidney transplant survival. Further analysis of CAV2 should be undertaken with an awareness of the sequence complexities and genetic variants highlighted by this study.
Resumo:
Geraint Ellis and Richard Cowell explain the findings of the ‘Delivering renewable energy under devolution’ project, including some reasons for Scotland’s lead.
The UK has seen massive increases in renewable energy since 1998, with installed capacity growing from 2,600 MW to 12,300 MW in 2011. This has coincided with devolution and it is within Northern Ireland, Scotland and Wales that the greatest increases have been seen.
As devolved administrations now host half of the UK’s renewable energy capacity, their policies are critical to achieving the broader UK targets. This also provides a fascinating insight into what sort of approach works best, and why. This has been the focus of a two-year study, funded by the Economic and Social Research Council, involving universities from across the UK, which indicates that Scotland is leading the way on renewable energy.
All devolved governments have offered significant support to renewable energy but have different degrees of powers in relation to energy. Scotland’s success seems to be based on the centrality of energy issues to current political aspirations, particularly the SNP, but also has cross-party support. The research suggests that the consensus on the importance of renewable energy amongst élite interests in Scotland helps to explain why Scottish governments have been empowered and enabled to make robust use of the powers available.
As it has achieved successful growth in the sector, this too helps cultivate credibility among key business interests and gives increased leverage to its position in policy discussions with the UK Government. Scotland has been more consistent over time in presenting the expansion of renewable energy as a national economic agenda, rather than just an environmental or rural development agenda. The availability of larger, windy, but relatively less contested sites for onshore wind in Scotland has meant that more projects went through central consenting procedures rather than local planning authorities. Its enhanced support for wave and tidal power technologies is also notable. These political conditions have been harder to find in the rest of the UK, making progress a little more uncertain.
Northern Ireland has used its powers (which are more extensive than Scotland’s) to facilitate small-scale renewables and bio-fuel processes, with its liberalised planning regime offering an initial boost to expanding capacity.
This has contrasted with the position in Wales, which has least control over energy but the Welsh Government has adopted a more innovative approach to strategic spatial zoning; this appears to have pulled in a larger volume of onshore wind development interest than could be expected in a comparable region of England. A downside of the Welsh approach appears to be the fact that the concentration of these wind projects in these zones has triggered public opposition and political conflict.
It therefore appears that the powers available to the devolved governments do not seem to determine which country has been able to make greatest headway, with broader political commitments being more significant. Despite this, the research does not conclude that the actions and activities undertaken by the devolved governments are necessarily the most important factors in shaping the development of renewable energy in the UK. This is because devolution is still a relatively new dimension of energy governance in the UK and decisions affecting key drivers for renewable energy investment are still made mainly in Westminster, with the Treasury exercising close budgetary control. In all areas of the UK, grid capacity expansion remains slow to achieve. The major growth in offshore wind to date has been driven mainly by Westminster and cross-UK bodies with the most significant capacity growth being in English territorial waters.
Resumo:
The aim of this study was to characterize the transcriptome of a balanced polymorphism, under the regulation of a single gene, for phosphate fertilizer responsiveness/arsenate toler- ance in wild grass Holcus lanatus genotypes screened from the same habitat.
De novo transcriptome sequencing, RNAseq (RNA sequencing) and single nucleotide poly- morphism (SNP) calling were conducted on RNA extracted from H.lanatus. Roche 454 sequencing data were assembled into c. 22 000 isotigs, and paired-end Illumina reads for phosphorus-starved (P) and phosphorus-treated (P+) genovars of tolerant (T) and nontoler- ant (N) phenotypes were mapped to this reference transcriptome.
Heatmaps of the gene expression data showed strong clustering of each P+/P treated genovar, as well as clustering by N/T phenotype. Statistical analysis identified 87 isotigs to be significantly differentially expressed between N and T phenotypes and 258 between P+ and P treated plants. SNPs and transcript expression that systematically differed between N and T phenotypes had regulatory function, namely proteases, kinases and ribonuclear RNA- binding protein and transposable elements.
A single gene for arsenate tolerance led to distinct phenotype transcriptomes and SNP pro- files, with large differences in upstream post-translational and post-transcriptional regulatory genes rather than in genes directly involved in P nutrition transport and metabolism per se.