54 resultados para Roper, Moses.
Resumo:
We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a late phase of infarct protection in skeletal muscle and that K(ATP) channels play a pivotal role in the trigger and mediator mechanisms. We observed that pig bilateral latissimus dorsi (LD) muscle flaps sustained 46 +/- 2% infarction when subjected to 4 h of ischemia/48 h of reperfusion. The late phase of infarct protection appeared at 24 h and lasted up to 72 h after hindlimb remote IPC. The LD muscle infarction was reduced to 28 +/- 3, 26 +/- 1, 23 +/- 2, 24 +/- 2 and 24 +/- 4% at 24, 28, 36, 48 and 72 h after remote IPC, respectively (P <0.05; n = 8). In subsequent studies, hindlimb remote IPC or intravenous injection of the sarcolemmal K(ATP) (sK(ATP)) channel opener P-1075 (2 microg/kg) at 24 h before 4 h of sustained ischemia (i.e., late preconditioning) reduced muscle infarction from 43 +/- 4% (ischemic control) to 24 +/- 2 and 19 +/- 3%, respectively (P <0.05, n = 8). Intravenous injection of the sK(ATP) channel inhibitor HMR 1098 (6 mg/kg) or the nonspecific K(ATP) channel inhibitor glibenclamide (Glib; 1 mg/kg) at 10 min before remote IPC completely blocked the infarct- protective effect of remote IPC in LD muscle flaps subjected to 4 h of sustained ischemia at 24 h after remote IPC. Intravenous bolus injection of the mitochondrial K(ATP) (mK(ATP)) channel inhibitor 5-hydroxydecanoate (5-HD; 5 mg/kg) immediately before remote IPC and 30-min intravenous infusion of 5-HD (5 mg/kg) during remote IPC did not affect the infarct-protective effect of remote IPC in LD muscle flaps. However, intravenous Glib or 5-HD, but not HMR 1098, given 24 h after remote IPC completely blocked the late infarct-protective effect of remote IPC in LD muscle flaps. None of these drug treatments affected the infarct size of control LD muscle flaps. The late phase of infarct protection was associated with a higher (P <0.05) muscle content of ATP at the end of 4 h of ischemia and 1.5 h of reperfusion and a lower (P <0.05) neutrophilic activity at the end of 1.5 h of reperfusion compared with the time-matched control. In conclusion, these findings support our hypothesis that hindlimb remote IPC induces an uninterrupted long (48 h) late phase of infarct protection, and sK(ATP) and mK(ATP) channels play a central role in the trigger and mediator mechanism, respectively.
Resumo:
Parasites and pathogens are ubiquitous and act as an important selection pressure on animals. Here, drawing primarily on our own research, mostly on insects, we illustrate how host-parasite interactions have played a role in the evolution of a range of phenomena, including animal coloration, social behavior, foraging ecology, sexual selection, and life-history tradeoffs, as well as how variation in host behavior and ecology can drive variation in parasitism risk and host allocation of resources to immunity and other antiparasite defenses. We conclude by identifying key areas for future study.
Resumo:
Successful innovation depends on knowledge – technological, strategic and market related. In this paper we explore the role and interaction of firms’ existing knowledge stocks and current knowledge flows in shaping innovation success. The paper contributes to our understanding of the determinants of firms’ innovation outputs and provides new information on the relationship between knowledge stocks, as measured by patents, and innovation output indicators. Our analysis uses innovation panel data relating to plants’ internal knowledge creation, external knowledge search and innovation outputs. Firm-level patent data is matched with this plant-level innovation panel data to provide a measure of firms’ knowledge stock. Two substantive conclusions follow. First, existing knowledge stocks have weak negative rather than positive impacts on firms’ innovation outputs, reflecting potential core-rigidities or negative path dependencies rather than the accumulation of competitive advantages. Second, knowledge flows derived from internal investment and external search dominate the effect of existing knowledge stocks on innovation performance. Both results emphasize the importance of firms’ knowledge search strategies. Our results also re-emphasize the potential issues which arise when using patents as a measure of innovation.
Resumo:
We study the fundamental Byzantine leader election problem in dynamic networks where the topology can change from round to round and nodes can also experience heavy {\em churn} (i.e., nodes can join and leave the network continuously over time). We assume the full information model where the Byzantine nodes have complete knowledge about the entire state of the network at every round (including random choices made by all the nodes), have unbounded computational power and can deviate arbitrarily from the protocol. The churn is controlled by an adversary that has complete knowledge and control over which nodes join and leave and at what times and also may rewire the topology in every round and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is an $O(\log^3 n)$ round algorithm that achieves Byzantine leader election under the presence of up to $O({n}^{1/2 - \epsilon})$ Byzantine nodes (for a small constant $\epsilon > 0$) and a churn of up to \\$O(\sqrt{n}/\poly\log(n))$ nodes per round (where $n$ is the stable network size).The algorithm elects a leader with probability at least $1-n^{-\Omega(1)}$ and guarantees that it is an honest node with probability at least $1-n^{-\Omega(1)}$; assuming the algorithm succeeds, the leader's identity will be known to a $1-o(1)$ fraction of the honest nodes. Our algorithm is fully-distributed, lightweight, and is simple to implement. It is also scalable, as it runs in polylogarithmic (in $n$) time and requires nodes to send and receive messages of only polylogarithmic size per round.To the best of our knowledge, our algorithm is the first scalable solution for Byzantine leader election in a dynamic network with a high rate of churn; our protocol can also be used to solve Byzantine agreement in a straightforward way.We also show how to implement an (almost-everywhere) public coin with constant bias in a dynamic network with Byzantine nodes and provide a mechanism for enabling honest nodes to store information reliably in the network, which might be of independent interest.