58 resultados para Quadratic, sieve, CUDA, OpenMP, SOC, Tegrak1
Resumo:
Power, and consequently energy, has recently attained first-class system resource status, on par with conventional metrics such as CPU time. To reduce energy consumption, many hardware- and OS-level solutions have been investigated. However, application-level information - which can provide the system with valuable insights unattainable otherwise - was only considered in a handful of cases. We introduce OpenMPE, an extension to OpenMP designed for power management. OpenMP is the de-facto standard for programming parallel shared memory systems, but does not yet provide any support for power control. Our extension exposes (i) per-region multi-objective optimization hints and (ii) application-level adaptation parameters, in order to create energy-saving opportunities for the whole system stack. We have implemented OpenMPE support in a compiler and runtime system, and empirically evaluated its performance on two architectures, mobile and desktop. Our results demonstrate the effectiveness of OpenMPE with geometric mean energy savings across 9 use cases of 15 % while maintaining full quality of service.
Resumo:
This paper is concerned with the analysis of the stability of delayed recurrent neural networks. In contrast to the widely used Lyapunov–Krasovskii functional approach, a new method is developed within the integral quadratic constraints framework. To achieve this, several lemmas are first given to propose integral quadratic separators to characterize the original delayed neural network. With these, the network is then reformulated as a special form of feedback-interconnected system by choosing proper integral quadratic constraints. Finally, new stability criteria are established based on the proposed approach. Numerical examples are given to illustrate the effectiveness of the new approach.
Resumo:
As data analytics are growing in importance they are also quickly becoming one of the dominant application domains that require parallel processing. This paper investigates the applicability of OpenMP, the dominant shared-memory parallel programming model in high-performance computing, to the domain of data analytics. We contrast the performance and programmability of key data analytics benchmarks against Phoenix++, a state-of-the-art shared memory map/reduce programming system. Our study shows that OpenMP outperforms the Phoenix++ system by a large margin for several benchmarks. In other cases, however, the programming model is lacking support for this application domain.
Resumo:
Background: Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. Results: We describe QUADrATiC (http://go.qub.ac.uk/QUADrATiC), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts.Conclusions: QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than previous alternative solutions.
Resumo:
Power capping is a fundamental method for reducing the energy consumption of a wide range of modern computing environments, ranging from mobile embedded systems to datacentres. Unfortunately, maximising performance and system efficiency under static power caps remains challenging, while maximising performance under dynamic power caps has been largely unexplored. We present an adaptive power capping method that reduces the power consumption and maximizes the performance of heterogeneous SoCs for mobile and server platforms. Our technique combines power capping with coordinated DVFS, data partitioning and core allocations on a heterogeneous SoC with ARM processors and FPGA resources. We design our framework as a run-time system based on OpenMP and OpenCL to utilise the heterogeneous resources. We evaluate it through five data-parallel benchmarks on the Xilinx SoC which allows fully voltage and frequency control. Our experiments show a significant performance boost of 30% under dynamic power caps with concurrent execution on ARM and FPGA, compared to a naive separate approach.
Resumo:
The astonishing development of diverse and different hardware platforms is twofold: on one side, the challenge for the exascale performance for big data processing and management; on the other side, the mobile and embedded devices for data collection and human machine interaction. This drove to a highly hierarchical evolution of programming models. GVirtuS is the general virtualization system developed in 2009 and firstly introduced in 2010 enabling a completely transparent layer among GPUs and VMs. This paper shows the latest achievements and developments of GVirtuS, now supporting CUDA 6.5, memory management and scheduling. Thanks to the new and improved remoting capabilities, GVirtus now enables GPU sharing among physical and virtual machines based on x86 and ARM CPUs on local workstations,computing clusters and distributed cloud appliances.
Resumo:
By the Golod–Shafarevich theorem, an associative algebra $R$ given by $n$ generators and $<n^2/3$ homogeneous quadratic relations is not 5-step nilpotent. We prove that this estimate is optimal. Namely, we show that for every positive integer $n$, there is an algebra $R$ given by $n$ generators and $\lceil n^2/3\rceil$ homogeneous quadratic relations such that $R$ is 5-step nilpotent.
Resumo:
In the book ’Quadratic algebras’ by Polishchuk and Positselski [23] algebras with a small number of generators (n = 2, 3) are considered. For some number r of relations possible Hilbert series are listed, and those appearing as series of Koszul algebras are specified. The first case, where it was not possible to do, namely the case of three generators n = 3 and six relations r = 6 is formulated as an open problem. We give here a complete answer to this question, namely for quadratic algebras with dimA_1 = dimA_2 = 3, we list all possible Hilbert series, and find out which of them can come from Koszul algebras, and which can not. As a consequence of this classification, we found an algebra, which serves as a counterexample to another problem from the same book [23] (Chapter 7, Sec. 1, Conjecture 2), saying that Koszul algebra of finite global homological dimension d has dimA_1 > d. Namely, the 3-generated algebra A given by relations xx + yx = xz = zy = 0 is Koszul and its Koszul dual algebra A^! has Hilbert series of degree 4: HA! (t) = 1 + 3t + 3t^2 + 2t^3 + t^4, hence A has global homological dimension 4.