63 resultados para Pyruvate dehydrogenase
Resumo:
The relationship between the biological activity of NO and its chemistry is complex. The objectives of this study were to investigate the influence of oxygen tension on the cytotoxicity of the NO• donor DETA/NO and to determine the effects of oxygen tension on the key RNS (reactive nitrogen species) responsible for any subsequent toxicity. The findings presented in this study indicate that the DETA/NO-mediated cytotoxic effects were enhanced under hypoxic conditions. Further investigations revealed that neither ONOO⁻ (peroxynitrite) nor nitroxyl was generated. Fluorimetric analysis in the presence of scavengers suggest for the first time that another RNS, dinitrogen trioxide may be responsible for the cytotoxicity with DETA/NO. Results showed destabilization of HIF (hypoxia inducible factor)-1α and depletion of GSH levels following the treatment with DETA/NO under hypoxia, which renders cells more susceptible to DETA/NO cytotoxicity, and could account for another mechanism of DETA/NO cytotoxicity under hypoxia. In addition, there was significant accumulation of nuclear p53, which showed that p53 itself might be a target for S-nitrosylation following the treatment with DETA/NO. Both the intrinsic apoptotic pathway and the Fas extrinsic apoptotic pathway were also activated. Finally, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is another important S-nitrosylated protein that may possibly play a key role in DETA/NO-mediated apoptosis and cytotoxicity. Therefore this study elucidates further mechanisms of DETA/NO mediated cytotoxicity with respect to S-nitrosylation that is emerging as a key player in the signalling and detection of DETA/NO-modified proteins in the tumour microenvironment.
Resumo:
2-Deoxy-C-nucleosides are a subcategory of C-nucleosides that has not been explored extensively, largely because the synthesis is less facile. Flexible synthetic procedures giving access to 2-deoxy-C-nucleosides are therefore of interest. To exemplify the versatility and highlight the limitations of a synthetic route recently developed to that effect, the first synthesis of 2-deoxy benzamide riboside is reported. Biological properties of this novel C-nucleoside are also discussed. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.
Resumo:
S-(2-Succinyl)cysteine (2SC) has been identified as a chemical modification in plasma proteins, in the non-mercaptalbumin fraction of human plasma albumin, in human skin collagen, and in rat skeletal muscle proteins and urine. 2SC increases in human skin collagen with age and is increased in muscle protein of diabetic vs. control rats. The concentration of 2SC in skin collagen and muscle protein correlated strongly with that of the advanced glycation/lipoxidation end-product (AGE/ALE), N(epsilon)-(carboxymethyl)lysine (CML). 2SC is formed by a Michael addition reaction of cysteine sulfhydryl groups with fumarate at physiological pH. Fumarate, but not succinate, inactivates the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase in vitro, in concert with formation of 2SC. 2SC is the first example of spontaneous chemical modification of protein by a metabolic intermediate in the Krebs cycle. These observations identify fumarate as an endogenous electrophile and suggest a role for fumarate in regulation of metabolism.
Resumo:
PURPOSE. We conducted a genome-wide association study to identify genetic factors that contribute to the etiology of heterophoria.
METHODS. We measured near and far vertical and horizontal phorias in 988 healthy adults aged 16 to 40 using the Keystone telebinocular with plates 5218 and 5219. We regressed degree of phoria against genotype at 642758 genetic loci. To control for false positives, we applied the conservative genome-wide permutation test to our data.
RESULTS. A locus at 6p22.2 was found to be associated with the degree of near horizontal phoria (P = 2.3 × 10 ). The P value resulting from a genome-wide permutation test was 0.014.
CONCLUSIONS. The strongest association signal arose from an intronic region of the gene ALDH5A1, which encodes the mitochondrial enzyme succinic semialdehyde dehydrogenase (SSADH), an enzyme involved in γ-aminobutyric acid metabolism. Succinic semialdehyde dehydrogenase deficiency, resulting from mutations of ALDH5A1, causes a variety of neural and behavioral abnormalities, including strabismus. Variation in ALDH5A1 is likely to contribute to degree of horizontal phoria.
Resumo:
Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD+/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD+/NADH ratio led to the activation of AMPK signaling in these animals. Conclusion: Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD+/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD+/NADH redox potential may be of potential therapeutic benefit in the clinical setting.
Resumo:
Objectives: Clinical studies have shown that more than 70% of primary bladder tumours arise in the area around the ureteric orifice. In this study a genomic approach was taken to explore the molecular mechanisms that may influence this phenomenon.
Methods: RNA was isolated from each individual normal ureteric orifice and the dome biopsy from 33 male patients. Equal amounts of the pooled ureteric orifice and dome mRNAs were labelled with Cy3 and Cy5, respectively before hybridising to the gene chip (UniGEM 2.0, Incyte Genomics Inc., Wilmington, Delaware, USA). Results: Significant changes (more than a twofold difference) in gene expression were observed in 3.1% (312) of the 10,176 gene array: 211 genes upregulated and 101 downregulated. Analysis of Cdc25B, TK1, PKM, and PDGFra with RT-PCR supported the reliability of the microarray result. Seladin-1 was the most upregulated gene in the ureteric orifice: 8.3-fold on the microarray and 11.4-fold by real time PCR.
Conclusions: Overall, this study suggests significant altered gene expression between these two anatomically distinct areas of the normal human bladder. Of particular note is Seladin-1, whose significance in cancer is yet to be clarified. Further studies of the genes discovered by this work will help clarify which of these differences influence primary bladder carcinogenesis. (c) 2006 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Resumo:
The broad aim of this work was to investigate and optimise the properties of calcium phosphate bone cements (CPCs) for use in vertebroplasty to achieve effective primary fixation of spinal fractures. The incorporation of collagen, both bovine and from a marine sponge (Chondrosia reniformis), into a CPC was investigated. The biological properties of the CPC and collagen-CPC composites were assessed in vitro through the use of human bone marrow stromal cells. Cytotoxicity, proliferation and osteoblastic differentiation were evaluated using lactate dehydrogenase, PicoGreen and alkaline phosphatase activity assays respectively. The addition of both types of collagen resulted in an increase in cytotoxicity, albeit not to a clinically relevant level. Cellular proliferation after 1, 7 and 14 days was unchanged. The osteogenic potential of the CPC was reduced through the addition of bovine collagen but remained unchanged in the case of the marine collagen. These findings, coupled with previous work showing that incorporation of marine collagen in this way can improve the physical properties of CPCs, suggest that such a composite may offer an alternative to CPCs in applications where low setting times and higher mechanical stability are important.
Resumo:
Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and establishment. As these factors operate at different spatial scales, we asked: Do the environmental factors known to determine community assembly at broad scales operate at fine scales (few meters)? How much do these factors account for community variation at fine scales? In which way do biotic and abiotic interactions drive changes in species composition? We surveyed the plant community within a dry grassland along a very steep gradient of soil characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three replicated macroplots of 15x15, 12x12 and 12x12 meters in extent. Soil samples were taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning to assess the effect of these variables on plant composition and statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random patterns in species co-occurrence using randomization schemes that account for patterns expected under species interactions. At a fine spatial scale, environmental factors explained 18% of variation when controlling for spatial autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14% variation. Null model analysis showed that species spatially segregated in a non-random way and these spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our grassland study suggests that environmental factors found to be directly relevant in broad scale studies are present also at small scales, but are supplemented by spatial processes and more direct interactions like competition.
Resumo:
Whereas osmotic stress response induced by solutes has been well-characterized in fungi, less is known about the other activities of environmentally ubiquitous substances. The latest methodologies to define, identify and quantify chaotropicity, i.e. substance-induced destabilization of macromolecular systems, now enable new insights into microbial stress biology (Cray et al. in Curr Opin Biotechnol 33:228–259, 2015a, doi:10.1016/j.copbio.2015.02.010; Ball and Hallsworth in Phys Chem Chem Phys 17:8297–8305, 2015, doi:10.1039/C4CP04564E; Cray et al. in Environ Microbiol 15:287–296, 2013a, doi:10.1111/1462-2920.12018). We used Aspergillus wentii, a paradigm for extreme solute-tolerant fungal xerophiles, alongside yeast cell and enzyme models (Saccharomyces cerevisiae and glucose-6-phosphate dehydrogenase) and an agar-gelation assay, to determine growth-rate inhibition, intracellular compatible solutes, cell turgor, inhibition of enzyme activity, substrate water activity, and stressor chaotropicity for 12 chemically diverse solutes. These stressors were found to be: (i) osmotically active (and typically macromolecule-stabilizing kosmotropes), including NaCl and sorbitol; (ii) weakly to moderately chaotropic and non-osmotic, these were ethanol, urea, ethylene glycol; (iii) highly chaotropic and osmotically active, i.e. NH4NO3, MgCl2, guanidine hydrochloride, and CaCl2; or (iv) inhibitory due primarily to low water activity, i.e. glycerol. At ≤0.974 water activity, Aspergillus cultured on osmotically active stressors accumulated low-M r polyols to ≥100 mg g dry weight−1. Lower-M r polyols (i.e. glycerol, erythritol and arabitol) were shown to be more effective for osmotic adjustment; for higher-M r polyols such as mannitol, and the disaccharide trehalose, water-activity values for saturated solutions are too high to be effective; i.e. 0.978 and 0.970 (25 ºC). The highly chaotropic, osmotically active substances exhibited a stressful level of chaotropicity at physiologically relevant concentrations (20.0–85.7 kJ kg−1). We hypothesized that the kosmotropicity of compatible solutes can neutralize chaotropicity, and tested this via in-vitro agar-gelation assays for the model chaotropes urea, NH4NO3, phenol and MgCl2. Of the kosmotropic compatible solutes, the most-effective protectants were trimethylamine oxide and betaine; but proline, dimethyl sulfoxide, sorbitol, and trehalose were also effective, depending on the chaotrope. Glycerol, by contrast (a chaotropic compatible solute used as a negative control) was relatively ineffective. The kosmotropic activity of compatible solutes is discussed as one mechanism by which these substances can mitigate the activities of chaotropic stressors in vivo. Collectively, these data demonstrate that some substances concomitantly induce chaotropicity-mediated and osmotic stresses, and that compatible solutes ultimately define the biotic window for fungal growth and metabolism. The findings have implications for the validity of ecophysiological classifications such as ‘halophile’ and ‘polyextremophile’; potential contamination of life-support systems used for space exploration; and control of mycotoxigenic fungi in the food-supply chain.
Resumo:
Purpose: Recent evidence suggests that neuroglial dysfunction and degeneration contributes to the etiology and progression of diabetic retinopathy. Advanced lipoxidation end products (ALEs) have been implicated in the pathology of various diseases, including diabetes and several neurodegenerative disorders. The purpose of the present study was to investigate the possible link between the accumulation of ALEs and neuroretinal changes in diabetic retinopathy.
Methods: Retinal sections obtained from diabetic rats and age-matched controls were processed for immunohistochemistry using antibodies against several well defined ALEs. In vitro experiments were also performed using a human Muller (Moorfields/Institute of Ophthalmology-Muller 1 [ MIO-M1]) glia cell line. Western blot analysis was used to measure the accumulation of the acrolein-derived ALE adduct N epsilon-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) in Muller cells preincubated with FDP-lysine-modified human serum albumin (FDP-lysine-HSA). Responses of Muller cells to FDP-lysine accumulation were investigated by analyzing changes in the protein expression of heme oxygenase-1 (HO-1), glial fibrillary acidic protein (GFAP), and the inwardly rectifying potassium channel Kir4.1. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF alpha) were determined by reverse transcriptase PCR (RT-PCR). Apoptotic cell death was evaluated by fluorescence-activated cell sorting (FACS) analysis after staining with fluorescein isothiocyanate (FITC)-labeled annexin V and propidium iodide.
Results: No significant differences in the levels of malondialdehyde-, 4-hydroxy-2-nonenal-, and 4-hydroxyhexenal-derived ALEs were evident between control and diabetic retinas after 4 months of diabetes. By contrast, FDP-lysine immunoreactivity was markedly increased in the Muller glia of diabetic rats. Time-course studies revealed that FDP-lysine initially accumulated within Muller glial end feet after only a few months of diabetes and thereafter spread distally throughout their inner radial processes. Exposure of human Muller glia to FDP-lysine-HSA led to a concentration-dependent accumulation of FDP-lysine-modified proteins across a broad molecular mass range. FDP-lysine accumulation was associated with the induction of HO-1, no change in GFAP, a decrease in protein levels of the potassium channel subunit Kir4.1, and upregulation of transcripts for VEGF, IL-6, and TNF-alpha. Incubation of Muller glia with FDP-lysine-HSA also caused apoptosis at high concentrations.
Conclusions: Collectively, these data strongly suggest that FDP-lysine accumulation could be a major factor contributing to the Muller glial abnormalities occurring in the early stages of diabetic retinopathy.
Resumo:
BACKGROUND: We proposed to exploit hypoxia-inducible factor (HIF)-1alpha overexpression in prostate tumours and use this transcriptional machinery to control the expression of the suicide gene cytosine deaminase (CD) through binding of HIF-1alpha to arrangements of hypoxia response elements. CD is a prodrug activation enzyme, which converts inactive 5-fluorocytosine to active 5-fluorouracil (5-FU), allowing selective killing of vector containing cells.
METHODS: We developed a pair of vectors, containing either five or eight copies of the hypoxia response element (HRE) isolated from the vascular endothelial growth factor (pH5VCD) or glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (pH8GCD) gene, respectively. The kinetics of the hypoxic induction of the vectors and sensitization effects were evaluated in 22Rv1 and DU145 cells in vitro.
RESULTS: The CD protein as selectively detected in lysates of transiently transfected 22Rv1 and DU145 cells following hypoxic exposure. This is the first evidence of GAPDH HREs being used to control a suicide gene therapy strategy. Detectable CD levels were sustained upon reoxygenation and prolonged hypoxic exposures. Hypoxia-induced chemoresistance to 5-FU was overcome in both cell lines treated with this suicide gene therapy approach. Hypoxic transfectants were sensitized to prodrug concentrations that were ten-fold lower than those that are clinically relevant. Moreover, the surviving fraction of reoxygenated transfectants could be further reduced with the concomitant delivery of clinically relevant single radiation doses.
CONCLUSIONS: This strategy thus has the potential to sensitize the hypoxic compartment of prostate tumours and improve the outcome of current therapies.
Resumo:
LC3, a mammalian homologue of yeast Atg8, is assumed to play an important part in bulk sequestration and degradation of cytoplasm (macroautophagy), and is widely used as an indicator of this process. To critically examine its role, we followed the autophagic flux of LC3 in rat hepatocytes during conditions of maximal macroautophagic activity (amino acid depletion), combined with analyses of macroautophagic cargo sequestration, measured as transfer of the cytosolic protein lactate dehydrogenase (LDH) to sedimentable organelles. To accurately determine LC3 turnover we developed a quantitative immunoblotting procedure that corrects for differential immunoreactivity of cytosolic and membrane-associated LC3 forms, and we included cycloheximide to block influx of newly synthesized LC3. As expected, LC3 was initially degraded by the autophagic-lysosomal pathway, but, surprisingly, autophagic LC3-flux ceased after ~2h. In contrast, macroautophagic cargo flux was well maintained, and density gradient analysis showed that sequestered LDH partly accumulated in LC3-free autophagic vacuoles. Hepatocytic macroautophagy could thus proceed independently of LC3. Silencing of either of the two mammalian Atg8 subfamilies in LNCaP prostate cancer cells exposed to macroautophagy-inducing conditions (starvation or the mTOR-inhibitor Torin1) confirmed that macroautophagic sequestration did not require the LC3 subfamily, but, intriguingly, we found the GABARAP subfamily to be essential.
Resumo:
Macroautophagy, the process responsible for bulk sequestration and lysosomal degradation of cytoplasm, is often monitored by means of the autophagy-related marker protein LC3. This protein is linked to the phagophoric membrane by lipidation during the final steps of phagophore assembly, and it remains associated with autophagic organelles until it is degraded in the lysosomes. The transfer of LC3 from cytosol to membranes and organelles can be measured by immunoblotting or immunofluorescence microscopy, but these assays provide no information about functional macroautophagic activity, i.e., whether the phagophores are actually engaged in the sequestration of cytoplasmic cargo and enclosing this cargo into sealed autophagosomes. Moreover, accumulating evidence suggest that macroautophagy can proceed independently of LC3. There is therefore a need for alternative methods, preferably effective cargo sequestration assays, which can monitor actual macroautophagic activity. Here, we provide an overview of various approaches that have been used over the last four decades to measure macroautophagic sequestration activity in mammalian cells. Particular emphasis is given to the so-called "LDH sequestration assay", which measures the transfer of the autophagic cargo marker enzyme LDH (lactate dehydrogenase) from the cytosol to autophagic vacuoles. The LDH sequestration assay was originally developed to measure macroautophagic activity in primary rat hepatocytes. Subsequently, it has found use in several other cell types, and in this article we demonstrate a further validation and simplification of the method, and show that it is applicable to several cell lines that are commonly used to study autophagy.
Resumo:
Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.