160 resultados para Pulmonary Ventilation
Resumo:
Study which shows that 10-11 yr olds are capable of effective CPR after a single 2 hour training session using the ABC for Life programme. However they perfrom more effective CPR when using a ratio of 15:2 rather than 30:2 chest compressions : ventilations
Resumo:
Purpose The purpose of this study was to investigate if pepsin measured in sputum is a useful marker of pulmonary aspiration secondary to gastroesophageal reflux (GER) in children. It is possible that the induced sputum procedure could cause GER and invalidate the results. The hypothesis stated that healthy children (those without history of respiratory or gastroesophageal symptoms) would not have pepsin detected in induced sputum. Methods Children attending surgical outpatients in the Royal Belfast Hospital for Sick Children (Belfast, Northern Ireland) were recruited. After spirometry, sputum was obtained by induction with hypertonic 3% saline. Spirometry was repeated, and complications were noted. An “in-house” enzyme-linked immunosorbent assay was used to measure pepsin concentration in sputum. The lower limit of detection of pepsin was 1.19 ng/mL. Results Children (n = 21) aged 4 to 16 years were recruited. Twenty children completed the study. No adverse effects were reported. Pepsin was detected in 17 (85%) of 20 sputum samples. Conclusions The act of sputum induction appears to induce physiologic GER in a healthy childhood population. The analysis of pepsin in sputum obtained by sputum induction is therefore not useful in the investigation of reflux-related respiratory disease.
Resumo:
Background: Hypercapnic acidosis exerts protective effects in acute lung injury but may also slow cellular repair. These effects may be mediated via inhibition of nuclear factor-kappa B (NF-kappa B), a pivotal transcriptional regulator in inflammation and repair.
Resumo:
Objective
Preliminary assessment of an automated weaning system (SmartCare™/PS) compared to usual management of weaning from mechanical ventilation performed in the absence of formal protocols.
Design and setting
A randomised, controlled pilot study in one Australian intensive care unit.
Patients
A total of 102 patients were equally divided between SmartCare/PS and Control.
Interventions
The automated system titrated pressure support, conducted a spontaneous breathing trial and provided notification of success (“separation potential”).
Measurements and results
The median time from the first identified point of suitability for weaning commencement to the state of “separation potential” using SmartCare/PS was 20 h (interquartile range, IQR, 2–40) compared to 8 h (IQR 2–43) with Control (log-rank P = 0.3). The median time to successful extubation was 43 h (IQR 6–169) using SmartCare/PS and 40 (14–87) with Control (log-rank P = 0.6). Unadjusted, the estimated probability of reaching “separation potential” was 21% lower (95% CI, 48% lower to 20% greater) with SmartCare/PS compared to Control. Adjusted for other covariates (age, gender, APACHE II, SOFAmax, neuromuscular blockade, corticosteroids, coma and elevated blood glucose), these estimates were 31% lower (95% CI, 56% lower to 9% greater) with SmartCare/PS. The study groups showed comparable rates of reintubation, non-invasive ventilation post-extubation, tracheostomy, sedation, neuromuscular blockade and use of corticosteroids.
Conclusions
Substantial reductions in weaning duration previously demonstrated were not confirmed when the SmartCare/PS system was compared to weaning managed by experienced critical care specialty nurses, using a 1:1 nurse-to-patient ratio. The effect of SmartCare/PS may be influenced by the local clinical organisational context.
Resumo:
Background and aim: Aberrant angiogenesis and defective epithelial repair are key features of idiopathic pulmonary fibrosis (IPF). Endostatin is an antiangiogenic peptide with known effects on endothelial cells. This study aimed to establish the levels of endostatin in the bronchoalveolar lavage fluid (BALF) in IPF and to investigate its actions on distal lung epithelial cells (DLEC) and primary type II cells.
Resumo:
RATIONALE:
Simvastatin inhibits inflammatory responses in vitro and in murine models of lung inflammation in vivo. As simvastatin modulates a number of the underlying processes described in acute lung injury (ALI), it may be a potential therapeutic option.
OBJECTIVES:
To investigate in vivo if simvastatin modulates mechanisms important in the development of ALI in a model of acute lung inflammation induced by inhalation of lipopolysaccharide (LPS) in healthy human volunteers.
METHODS:
Thirty healthy subjects were enrolled in a double-blind, placebo-controlled study. Subjects were randomized to receive 40 mg or 80 mg of simvastatin or placebo (n = 10/group) for 4 days before inhalation of 50 microg LPS. Measurements were performed in bronchoalveolar lavage fluid (BALF) obtained at 6 hours and plasma obtained at 24 hours after LPS challenge. Nuclear translocation of nuclear factor-kappaB (NF-kappaB) was measured in monocyte-derived macrophages.
MEASUREMENTS AND MAIN RESULTS:
Pretreatment with simvastatin reduced LPS-induced BALF neutrophilia, myeloperoxidase, tumor necrosis factor-alpha, matrix metalloproteinases 7, 8, and 9, and C-reactive protein (CRP) as well as plasma CRP (all P < 0.05 vs. placebo). There was no significant difference between simvastatin 40 mg and 80 mg. BALF from subjects post-LPS inhalation induced a threefold up-regulation in nuclear NF-kappaB in monocyte-derived macrophages (P < 0.001); pretreatment with simvastatin reduced this by 35% (P < 0.001).
CONCLUSIONS:
Simvastatin has antiinflammatory effects in the pulmonary and systemic compartment in humans exposed to inhaled LPS.
Resumo:
The LifeShirt is a novel ambulatory monitoring system that records cardio respiratory measurements outside the laboratory. Validity and reliability of cardiorespiratory measurements recorded by the LifeShirt were assessed and two methods of calibrating the LifeShirt were compared. Participants performed an incremental treadmill test and a constant work rate test (65% peak oxygen uptake) on four occasions (>48 In apart) and wore the LifeShirt, COSMED system and Polar Sport Tester simultaneously. The LifeShirt was calibrated using two methods: comparison to a spirometer; and 800 ml fixed-volume bag. Ventilation, respiratory rate, expiratory time and heart rate recorded by the LifeShirt were compared to measurements recorded by laboratory equipment. Sixteen adults participated (6M: 10F); mean (SD) age 23.1 (2.9) years. Agreement between the LifeShirt and laboratory equipment was acceptable. Agreement for ventilation was improved by calibrating the LifeShirt using a spirometer. Reliability was similar for the LifeShirt and the laboratory equipment. This study suggests that the LifeShirt provides a valid and reliable method of ambulatory monitoring. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Smoking cessation is the primary disease modifying intervention for chronic obstructive pulmonary disease (COPD).