95 resultados para Pulmonary Embolism
Resumo:
Chronic obstructive pulmonary disease (COPD) is predominantly caused by cigarette smoking and is considered a worldwide preventable chronic illness. Smoking cessation is considered the primary intervention for disease management and nurses should play a major role in assisting patients to stop smoking. Currently there is a lack of professional consensus on how cessation interventions should be evaluated. The vast array of biochemical markers reported in the literature can be confusing and can make the comparisons of results difficult.
Resumo:
We present the case of a 47-year-old immunocompetent patient with clinical evidence of pulmonary mycobacterial disease which was found to be due to Mycobacterium triplex. This novel organism is an uncommon, emerging, pathogen for which few reports of clinical infection exist in the medical literature. © 2002 The British Infection Society.
Resumo:
1. Measurements of artery contraction, cytosolic [Ca(2+)], and Ca(2+) permeability were made to examine contractile and cytosolic [Ca(2+)] responses of canine pulmonary arteries and isolated cells to 5-hydroxytryptamine (5-HT), and to determine the roles of intracellular Ca(2+) release and extracellular Ca(2+) entry in 5-HT responses. 2. The EC(50) for 5-HT-mediated contractions and cytosolic [Ca(2+)] increases was approximately 10(-7) M and responses were inhibited by ketanserin, a 5-HT(2A)-receptor antagonist. 3. 5-HT induced cytosolic [Ca(2+)] increases were blocked by 20 microM Xestospongin-C and by 2-APB (IC(50)=32 microM inhibitors of InsP(3) receptor activation. 4. 5-HT-mediated contractions were reliant on release of InsP(3) but not ryanodine-sensitive Ca(2+) stores. 5. 5-HT-mediated contractions and cytosolic [Ca(2+)] increases were partially inhibited by 10 microM nisoldipine, a voltage-dependent Ca(2+) channel blocker. 6. Extracellular Ca(2+) removal reduced 5-HT-mediated contractions further than nisoldipine and ablated cytosolic [Ca(2+)] increases and [Ca(2+)] oscillations. Similar to Ca(2+) removal, Ni(2+) reduced cytosolic [Ca(2+)] and [Ca(2+)] oscillations. 7. Mn(2+) quench of fura-2 and voltage-clamp experiments showed that 5-HT failed to activate any significant voltage-independent Ca(2+) entry pathways, including store-operated and receptor-activated nonselective cation channels. Ni(2+) but not nisoldipine or Gd(3+) blocked basal Mn(2+) entry. 8. Voltage-clamp experiments showed that simultaneous depletion of both InsP(3) and ryanodine-sensitive intracellular Ca(2+) stores activates a current with linear voltage dependence and a reversal potential consistent with it being a nonselective cation channel. 5-HT did not activate this current. 9. Basal Ca(2+) entry, rather than CCE, is important to maintain 5-HT-induced cytosolic [Ca(2+)] responses and contraction in canine pulmonary artery.
Resumo:
Experiments were performed to determine whether capacitative Ca(2+) entry (CCE) can be activated in canine pulmonary and renal arterial smooth muscle cells (ASMCs) and whether activation of CCE parallels the different functional structure of the sarcoplasmic reticulum (SR) in these two cell types. The cytosolic [Ca(2+)] was measured by imaging fura-2-loaded individual cells. Increases in the cytosolic [Ca(2+)] due to store depletion in pulmonary ASMCs required simultaneous depletion of both the inositol 1,4,5-trisphosphate (InsP(3))- and ryanodine (RY)-sensitive SR Ca(2+) stores. In contrast, the cytosolic [Ca(2+)] rises in renal ASMCs occurred when the SR stores were depleted through either the InsP(3) or RY pathways. The increase in the cytosolic [Ca(2+)] due to store depletion in both pulmonary and renal ASMCs was present in cells that were voltage clamped and was abolished when cells were perfused with a Ca(2+)-free bathing solution. Rapid quenching of the fura-2 signal by 100 microM Mn(2+) following SR store depletion indicated that extracellular Ca(2+) entry increased in both cell types and also verified that activation of CCE in pulmonary ASMCs required the simultaneous depletion of the InsP(3)- and RY-sensitive SR Ca(2+) stores, while CCE could be activated in renal ASMCs by the depletion of either of the InsP(3)- or RY-sensitive SR stores. Store depletion Ca(2+) entry in both pulmonary and renal ASMCs was strongly inhibited by Ni(2+) (0.1-10 mM), slightly inhibited by Cd(2+) (200-500 microM), but was not significantly affected by the voltage-gated Ca(2+) channel (VGCC) blocker nisoldipine (10 microM). The non-selective cation channel blocker Gd(3+) (100 microM) inhibited a portion of the Ca(2+) entry in 6 of 18 renal but not pulmonary ASMCs. These results provide evidence that SR Ca(2+) store depletion activates CCE in parallel with the organization of intracellular Ca(2+) stores in canine pulmonary and renal ASMCs.
Resumo:
Pulmonary disease is the main cause of morbidity and mortality in cystic fibrosis (CF) suffers, with multidrug-resistant Pseudomonas aeruginosa and Burkholderia cepacia complex as problematic pathogens in terms of recurrent and unremitting infections. Novel treatment of pulmonary infection is required to improve the prognosis and quality of life for chronically infected patients. Photodynamic antimicrobial chemotherapy (PACT) is a treatment combining exposure to a light reactive drug, with light of a wavelength specific for activation of the drug, in order to induce cell death of bacteria. Previous studies have demonstrated the susceptibility of CF pathogens to PACT in vitro. However, for the treatment to be of clinical use, light and photosensitizer must be able to be delivered successfully to the target tissue. This preliminary study assessed the potential for delivery of 635 nm light and methylene blue to the lung using an ex vivo and in vitro lung model. Using a fibre-optic light delivery device coupled to a helium-neon laser, up to 11% of the total light dose penetrated through full thickness pulmonary parenchymal tissue, which indicates potential for multiple lobe irradiation in vivo. The mass median aerodynamic diameter (MMAD) of particles generated via methylene blue solution nebulisation was 4.40 µm, which is suitable for targeting the site of infection within the CF lung. The results of this study demonstrate the ability of light and methylene blue to be delivered to the site of infection in the CF lung. PACT remains a viable option for selective killing of CF lung pathogens.