144 resultados para Protozoa, Pathogenic.
Resumo:
Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.
Resumo:
Explaining the uniqueness of the acquired somatic JAK2 V617F mutation, which is present in more than 95% of polycythemia vera patients, has been a challenge. The V617F mutation in the pseudokinase domain of JAK2 renders the unmutated kinase domain constitutively active. We have performed random mutagenesis at position 617 of JAK2 and tested each of the 20 possible amino acids for ability to induce constitutive signaling in Ba/F3 cells expressing the erythropoietin receptor. Four JAK2 mutants, V617W, V617M, V617I, and V617L, were able to induce cytokine independence and constitutive downstream signaling. Only V617W induced a level of constitutive activation comparable with V617F. Also, only V617W stabilized tyrosine-phosphorylated suppressor of cytokine signaling 3 ( SOCS3), a mechanism by which JAK2 V617F overcomes inhibition by SOCS3. The V617W mutant induced a myeloproliferative disease in mice, mainly characterized by erythrocytosis and megakaryocytic proliferation. Although JAK2 V617W would predictably be pathogenic in humans, the substitution of the Val codon, GTC, by TTG, the codon for Trp, would require three base pair changes, and thus it is unlikely to occur. We discuss how the predicted conformations of the activated JAK2 mutants can lead to better screening assays for novel small molecule inhibitors.
Resumo:
Objectives: The aim of the investigation was to use in vitro transposon mutagenesis to generate metronidazole resistance in the obligately anaerobic pathogenic bacterium Bacteroides thetaiotaomicron, and to identify the genes involved to enable investigation of potential mechanisms for the generation of metronidazole resistance.
Methods: The genes affected by the transposon insertion were identified by plasmid rescue and sequencing. Expression levels of the relevant genes were determined by semi-quantitative RNA hybridization and catabolic activity by lactate dehydrogenase/pyruvate oxidoreductase assays.
Results: A metronidazole-resistant mutant was isolated and the transposon insertion site was identified in an intergenic region between the rhaO and rhaR genes of the gene cluster involved in the uptake and catabolism of rhamnose. Metronidazole resistance was observed during growth in defined medium containing either rhamnose or glucose. The metronidazole-resistant mutant showed improved growth in the presence of rhamnose as compared with the wild-type parent. There was increased transcription of all genes of the rhamnose gene cluster in the presence of rhamnose and glucose, likely due to the transposon providing an additional promoter for the rhaR gene, encoding the positive transcriptional regulator of the rhamnose operon. The B. thetaiotaomicron metronidazole resistance phenotype was recreated by overexpressing the rhaR gene in the B. thetaiotaomicron wild-type parent. Both the metronidazole-resistant transposon mutant and RhaR overexpression strains displayed a phenotype of higher lactate dehydrogenase and lower pyruvate oxidoreductase activity in comparison with the parent strain during growth in rhamnose.
Conclusions: These data indicate that overexpression of the rhaR gene generates metronidazole resistance in B. thetaiotaomicron
Resumo:
Transcriptome analysis using microarray technology represents a powerful unbiased approach for delineating pathogenic mechanisms in disease. Here molecular mechanisms of renal tubulointerstitial fibrosis (TIF) were probed by monitoring changes in the renal transcriptome in a glomerular disease-dependent model of TIF ( adriamycin nephropathy) using Affymetrix (mu74av2) microarray coupled with sequential primary biological function-focused and secondary
Resumo:
The retina is exposed to a lifetime of potentially damaging environmental and physiological factors that make the component cells exquisitely sensitive to age-related processes. Retinal ageing is complex and a raft of abnormalities can accumulate in all layers of the retina. Some of this pathology serves as a sinister preamble to serious conditions such as age-related macular degeneration (AMD) which remains the leading cause of irreversible blindness in the Western world.
The formation of advanced glycation end products (AGEs) is a natural function of ageing but accumulation of these adducts also represents a key pathophysiological event in a range of important human diseases. AGEs act as mediators of neurodegeneration, induce irreversible changes in the extracellular matrix, vascular dysfunction and pro-inflammatory signalling. Since many cells and tissues of the eye are profoundly influenced by such processes, it is fitting that advanced glycation is now receiving considerable attention as a possible pathogenic factor in visual disorders.
This review presents the current evidence for a pathogenic role for AGEs and activation of the receptor for AGEs (RAGE) in initiation and progression of retinal disease. It draws upon the clinical and experimental literature and highlights the opportunities for further research that would definitively establish these adducts as important instigators of retinal disease. The therapeutic potential for novel agents that can ameliorate AGE formation of attenuate RAGE signalling in the retina is also discussed.
Resumo:
OBJECTIVE:
To elucidate the contribution of environmental versus genetic factors to the significant losses in visual function associated with normal aging.
DESIGN:
A classical twin study.
PARTICIPANTS:
Forty-two twin pairs (21 monozygotic and 21 dizygotic; age 57-75 years) with normal visual acuity recruited through the Australian Twin Registry.
METHODS:
Cone function was evaluated by establishing absolute cone contrast thresholds to flicker (4 and 14 Hz) and isoluminant red and blue colors under steady state adaptation. Adaptation dynamics were determined for both cones and rods. Bootstrap resampling was used to return robust intrapair correlations for each parameter.
MAIN OUTCOME MEASURES:
Psychophysical thresholds and adaptational time constants.
RESULTS:
The intrapair correlations for all color and flicker thresholds, as well as cone absolute threshold, were significantly higher in monozygotic compared with dizygotic twin pairs (P<0.05). Rod absolute thresholds (P = 0.28) and rod and cone recovery rate (P = 0.83; P = 0.79, respectively) did not show significant differences between monozygotic and dizygotic twins in their intrapair correlations, indicating that steady-state cone thresholds and flicker thresholds have a marked genetic contribution, in contrast with rod thresholds and adaptive processes, which are influenced more by environmental factors over a lifetime.
CONCLUSIONS:
Genes and the environment contribute differently to important neuronal processes in the retina and the role they may play in the decline in visual function as we age. Consequently, retinal structures involved in rod thresholds and adaptive processes may be responsive to appropriate environmental manipulation. Because the functions tested are commonly impaired in the early stages of age-related macular degeneration, which is known to have a multifactorial etiology, this study supports the view that pathogenic pathways early in the disease may be altered by appropriate environmental intervention.
Resumo:
Light and photosensitizer-mediated killing of many pathogens, termed photodynamic antimicrobial chemotherapy (PACT), has been extensively investigated in vitro. A wide range of organisms from the Gram-positive Staphylococcus aureus to the Gram-negative Pseudomonas aeruginosa have been proven to be susceptible to PACT. Multidrug-resistant strains are just as susceptible to this treatment as their naive counterparts. Both enveloped and non-enveloped viruses have demonstrated susceptibility in vitro, in addition to fungi and protozoa. Significantly, however, no clinical treatments based on PACT are currently licensed. This paper provides a comprehensive review of work carried out to date on delivery of photosensitizers for use in PACT, including topical, intranasal and oral/buccal delivery, as well as targeted delivery. We have also reviewed photo-antimicrobial surfaces. It is hoped that, through a rational approach to formulation design and subsequent success in small-scale clinical trials, more widespread use will be made of PACT in the clinic, to the benefit of patients worldwide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In photodynamic antimicrobial chemotherapy (PACT), a combination of a sensitising drug and visible light causes selective destruction of microbial cells. The ability of light-drug combinations to kilt microorganisms has been known for over 100 years. However, it is only recently with the beginning of the search for alternative treatments for antibiotic-resistant pathogens that the phenomenon has been investigated in detail. Numerous studies have shown PACT to be highly effective in the in vitro destruction of viruses and protozoa, as well as Gram-positive and Gram-negative bacteria and fungi. Results of experimental investigations have demonstrated conclusively that both dermatomycetes and yeasts can be effectively killed by photodynamic action employing phenothiazinium, porphyrin and phthatocyanine photosensitisers. Importantly, considerable setectivity for fungi over human cells has been demonstrated, no reports of fungal resistance exist and the treatment is not associated with genotoxic or mutagenic effects to fungi or human cells. In spite of the success of cell culture investigations, only a very small number of in vivo animal. and human trials have been published. The present paper reviews the studies published to date on antifungal applications of PACT and aims to raise awareness of this area of research, which has the potential to make a significant impact in future treatment of fungal infections. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
PURPOSE: Retinitis pigmentosa (RP) causes hereditary blindness in adults (prevalence, approximately 1 in 4000). Each of the more than 30 causative genes identified to date are responsible for only a small percentage of cases. Genetic diagnosis via traditional methods is problematic, and a single test with a higher probability of detecting the causative mutation would be very beneficial for the clinician. The goal of this study therefore was to develop a high-throughput screen capable of detecting both known mutations and novel mutations within all genes implicated in autosomal recessive or simplex RP. DESIGN: Evaluation of diagnostic technology. PARTICIPANTS AND CONTROLS: Participants were 56 simplex and autosomal recessive RP patients, with 360 population controls unscreened for ophthalmic disease. METHODS: A custom genechip capable of resequencing all exons containing known mutations in 19 disease-associated genes was developed (RP genechip). A second, commercially available arrayed primer extension (APEX) system was used to screen 501 individual previously reported variants. The ability of these high-throughput approaches to identify pathogenic variants was assessed in a cohort of simplex and autosomal recessive RP patients. MAIN OUTCOME MEASURES: Number of mutations and potentially pathogenic variants identified. RESULTS: The RP genechip identified 44 sequence variants: 5 previously reported mutations; 22 known single nucleotide polymorphisms (SNPs); 11 novel, potentially pathogenic variants; and 6 novel SNPs. There was strong concordance with the APEX array, but only the RP genechip detected novel variants. For example, identification of a novel mutation in CRB1 revealed a patient, who also had a single previously known CRB1 mutation, to be a compound heterozygote. In some individuals, potentially pathogenic variants were discovered in more than one gene, consistent with the existence of disease modifier effects resulting from mutations at a second locus. CONCLUSIONS: The RP genechip provides the significant advantage of detecting novel variants and could be expected to detect at least one pathogenic variant in more than 50% of patients. The APEX array provides a reliable method to detect known pathogenic variants in autosomal recessive RP and simplex RP patients and is commercially available. High-throughput genotyping for RP is evolving into a clinically useful genetic diagnostic tool.
Resumo:
The increasing emergence of multidrug-resistant micro-organisms presents one of the greatest challenges in the clinical management of infectious diseases. Therefore, novel antimicrobial agents are urgently required to address this issue. In this report, we describe the solid phase synthesis, characterization, microbiological and toxicological evaluation of a library of ultrashort cationic antimicrobial lipopeptides based on the previously described tetrapeptide amide H-Orn-Orn-Trp-Trp-NH2 conjugated with saturated fatty acids which have inherent antimicrobial activity. The microbiological activity of these ultrashort cationic lipopeptides, which exhibit excellent, broad-spectrum antimicrobial activity against a number of clinically important pathogenic bacteria and fungi, including multidrug resistant micro-organisms in both planktonic and sessile (biofilm) cultures is reported.
Resumo:
The pathogenesis of diabetic retinopathy is multifactorial, and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. All cells in the retina are affected by the diabetic milieu, and in view of such disease and tissue complexity, it is unlikely that any single process is solely responsible for retinal pathophysiology. Nevertheless, establishing causal mechanisms remains an important research goal. This review concentrates on the formation of advanced glycation end products (AGEs) and the role they play in diabetic retinopathy. Perspective is provided on advanced glycation in the retina, the impact that this process has on retinal cell function, and how it relates to other pathogenic pathways. Emphasis is also placed the modulatory role of the receptor for AGEs (RAGE) and how its activation could evoke retinal inflammatory disease. Further research is needed to achieve a clear understanding of the cellular and molecular processes that underpin diabetic retinopathy's initiation and progression. Such advances in basic mechanisms may lead to effective treatments that can prevent progression of retinopathy from the point of the diagnosis of diabetes to sight-threatening proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME).
Resumo:
1. Diet and health are intimately linked and recent studies have found that caloric restriction can affect immune function. However, when given a choice between diets that differ in their macronutrient composition, pathogen-infected individuals can select a diet that improves their survival, suggesting that the nutritional composition of the diet, as well as its calorie content, can play a role in defence against disease. Moreover, as individuals change their diet when infected, it suggests that a diet that is optimal for growth is not optimal for immunity, leading to trade-offs.
2. Currently, our knowledge of the effects of diet on immunity is limited because previous experiments have manipulated either single nutrients or the calorie content of the diet without considering their interactive effects. By simultaneously manipulating both the diet composition (quality) and its caloric density (quantity), in both naive and immune-challenged insects, we asked how do diet quality and quantity influence an individual's ability to mount an immune response? And to what extent are allocation trade-offs driven by quantity- versus quality-based constraints?
3. We restricted individuals to 20 diets varying in their protein and carbohydrate content and used 3D response surfaces to visualize dietary effects on larval growth and immune traits. Our results show that both constitutive and induced immune responses are not limited by the total quantity of nutrients consumed, but rather different traits respond differently to variation in the ratios of macronutrients (diet quality), and peak in different regions of macronutrient space. The preferred dietary composition therefore represents a compromise between the nutritional requirements of growth and immune responses. We also show that a non-pathogenic immune challenge does not affect diet choice, rather immune-challenged insects modify their allocation of nutrients to improve their immune response.
4. Our results indicate that immune traits are affected by the macronutrient content of the diet and that no diet can simultaneously optimize all components of the immune system. To date the emphasis has been on the effects of micronutrients in improving immunity, our findings indicate that this must be widened to include the neglected impact of macronutrients on defence against disease.
Resumo:
Aggregations or blooms of jellyfish are increasingly problematic for the aquaculture industry. Jellyfishassociated mass mortalities of sea-caged fish are most often caused by swarms of oceanic species like Pelagia noctiluca. These relatively large jellyfish get carried by tides and currents onto fish cages, causing them to break up into pathogenic nematocyst-containing pieces that are capable of passing through the mesh of the cages. The main effect on fish is gill damage leading to respiratory distress, but the lesions may also be compounded by bacterial infection, Tenacibaculum maritimum being one of the pathogens involved. In our previous study, we highlighted the ability of the jellyfish Phialella quadrata to carry this important pathogen. However, since these small jellyfish were collected around sea-cages of infected salmon, it was not possible to determine if the jellyfish or the fish themselves were the original source of the bacteria. Results of the current study demonstrate that these filamentous bacteria are present on the mouth of P. noctiluca that had no previous contact with farmed fish. These new results highlight the fact that some Cnidarian species harbour T. maritimum and suggest that jellyfishmight be a natural host for these bacteria whose environmental reservoir has not yet been determined.
Resumo:
Diabetic retinopathy (DR) is the most widespread complication of diabetes mellitus and a major cause of blindness in the working population of developed countries. The clinicopathology of the diabetic retina has been extensively studied, although the relative contribution of the various biochemical and molecular sequelae of hyperglycemia remains ill defined. Many neural and microvascular abnormalities occur in the retina of short-term diabetic animals but it remains uncertain how closely these acute changes relate to chronic human disease. It is important to determine the relationship between alterations observed within the first weeks or months in short-term aminal models, and human disease, where clinically manifest retinopathy occurs only after durations of diabetes measured in years. This review is focused on the retinal microvasculature, although it should be appreciated that pathological changes in this system often occur in parallel with abnormalities in the neural parenchyma that may be derivative or even causal. Nevertheless, it is useful to reevaluate the microvascular lesions that are manifest in the retina during diabetes in humans and long-term animal models, since in addition to providing useful clues to the pathogenic basis of DR as a disease entity, it is in the deterrence of such changes that the efficacy of any novel treatment regimes will be measured. In particular, an emphasis will be placed on the relatively unappreciated role of arteriolar dysfunction in the clinical manifestations and pathology of this disease.
Resumo:
Chronic use of chloroquine has been shown to induce numerous pathophysiological defects in the retina. This drug has the ability to alter pH of intracellular compartments and lysosomal function of the retinal pigment epithelium (RPE) and retinal neurons may constitute the basis of chloroquine retinopathy. The aim of the current study was to investigate pathogenic alterations in retinal cells continuously exposed to chloroquine using appropriate in vivo and in vitro models.