48 resultados para Planning Support System
Resumo:
Electric vehicles (EV) are proposed as a measure to reduce greenhouse gas emissions in transport and support increased wind power penetration across modern power systems. Optimal benefits can only be achieved, if EVs are deployed effectively, so that the exhaust emissions are not substituted by additional emissions in the electricity sector, which can be implemented using Smart Grid controls. This research presents the results of an EV roll-out in the all island grid (AIG) in Ireland using the long term generation expansion planning model called the Wien Automatic System Planning IV (WASP-IV) tool to measure carbon dioxide emissions and changes in total energy. The model incorporates all generators and operational requirements while meeting environmental emissions, fuel availability and generator operational and maintenance constraints to optimize economic dispatch and unit commitment power dispatch. In the study three distinct scenarios are investigated base case, peak and off-peak charging to simulate the impacts of EV’s in the AIG up to 2025.
Resumo:
With the increasing utilization of combined heat and power plants (CHP), electrical, gas, and thermal systems are becoming tightly integrated in the urban energy system (UES). However, the three systems are usually planned and operated separately, ignoring their interactions and coordination. To address this issue, the coupling point of different systems in the UES is described by the energy hub model. With this model, an integrated load curtailment method is proposed for the UES. Then a Monte Carlo simulation based approach is developed to assess the reliability of coordinated energy supply systems. Based on this approach, a reliability-optimal energy hub planning method is proposed to accommodate higher renewable energy penetration. Numerical studies indicate that the proposed approach is able to quantify the UES reliability with different structures. Also, optimal energy hub planning scheme can be determined to ensure the reliability of the UES with high renewable penetration.