59 resultados para Parametric Vibration
Resumo:
A parametric regression model for right-censored data with a log-linear median regression function and a transformation in both response and regression parts, named parametric Transform-Both-Sides (TBS) model, is presented. The TBS model has a parameter that handles data asymmetry while allowing various different distributions for the error, as long as they are unimodal symmetric distributions centered at zero. The discussion is focused on the estimation procedure with five important error distributions (normal, double-exponential, Student's t, Cauchy and logistic) and presents properties, associated functions (that is, survival and hazard functions) and estimation methods based on maximum likelihood and on the Bayesian paradigm. These procedures are implemented in TBSSurvival, an open-source fully documented R package. The use of the package is illustrated and the performance of the model is analyzed using both simulated and real data sets.
Resumo:
The assimilation of discrete higher fidelity data points with model predictions can be used to achieve a reduction in the uncertainty of the model input parameters which generate accurate predictions. The problem investigated here involves the prediction of limit-cycle oscillations using a High-Dimensional Harmonic Balance method (HDHB). The efficiency of the HDHB method is exploited to enable calibration of structural input parameters using a Bayesian inference technique. Markov-chain Monte Carlo is employed to sample the posterior distributions. Parameter estimation is carried out on both a pitch/plunge aerofoil and Goland wing configuration. In both cases significant refinement was achieved in the distribution of possible structural parameters allowing better predictions of their
true deterministic values.
Resumo:
In this paper, we consider the variable selection problem for a nonlinear non-parametric system. Two approaches are proposed, one top-down approach and one bottom-up approach. The top-down algorithm selects a variable by detecting if the corresponding partial derivative is zero or not at the point of interest. The algorithm is shown to have not only the parameter but also the set convergence. This is critical because the variable selection problem is binary, a variable is either selected or not selected. The bottom-up approach is based on the forward/backward stepwise selection which is designed to work if the data length is limited. Both approaches determine the most important variables locally and allow the unknown non-parametric nonlinear system to have different local dimensions at different points of interest. Further, two potential applications along with numerical simulations are provided to illustrate the usefulness of the proposed algorithms.
Resumo:
The fuel consumption of automotive vehicles has become a prime consideration to manufacturers and operators as fuel prices continue to rise steadily, and legislation governing toxic emissions becomes ever more strict. This is particularly true for bus operators as government fuel subsidies are cut or removed.
In an effort to reduce the fuel consumption of a diesel-electric hybrid bus, an exhaust recovery turbogenerator has been selected from a wide ranging literature review as the most appropriate method of recovering some of the wasted heat in the exhaust line. This paper examines the effect on fuel consumption of a turbogenerator applied to a 2.4-litre diesel engine.
A validated one-dimensional engine model created using Ricardo WAVE was used as a baseline, and was modified in subsequent models to include a turbogenerator downstream, and in series with, the turbocharger turbine. A fuel consumption map of the modified engine was produced, and an in-house simulation tool was then used to examine the fuel economy benefit delivered by the turbogenerator on a bus operating on various drive-cycles.
A parametric study is presented which examined the performance of turbogenerators of various size and power output. The operating strategy of the turbogenerator was also discussed with a view to maximising turbine efficiency at each operating point.
The performance of the existing turbocharger on the hybrid bus was also investigated; both the compressor and turbine were optimised and the subsequent benefits to the fuel consumption of the vehicle were shown.
The final configuration is then presented and the overall improvement in fuel economy of the hybrid bus was determined over various drive-cycles.
Resumo:
his paper considers a problem of identification for a high dimensional nonlinear non-parametric system when only a limited data set is available. The algorithms are proposed for this purpose which exploit the relationship between the input variables and the output and further the inter-dependence of input variables so that the importance of the input variables can be established. A key to these algorithms is the non-parametric two stage input selection algorithm.
Resumo:
Bridge construction responds to the need for environmentally friendly design of motorways and facilitates the passage through sensitive natural areas and the bypassing of urban areas. However, according to numerous research studies, bridge construction presents substantial budget overruns. Therefore, it is necessary early in the planning process for the decision makers to have reliable estimates of the final cost based on previously constructed projects. At the same time, the current European financial crisis reduces the available capital for investments and financial institutions are even less willing to finance transportation infrastructure. Consequently, it is even more necessary today to estimate the budget of high-cost construction projects -such as road bridges- with reasonable accuracy, in order for the state funds to be invested with lower risk and the projects to be designed with the highest possible efficiency. In this paper, a Bill-of-Quantities (BoQ) estimation tool for road bridges is developed in order to support the decisions made at the preliminary planning and design stages of highways. Specifically, a Feed-Forward Artificial Neural Network (ANN) with a hidden layer of 10 neurons is trained to predict the superstructure material quantities (concrete, pre-stressed steel and reinforcing steel) using the width of the deck, the adjusted length of span or cantilever and the type of the bridge as input variables. The training dataset includes actual data from 68 recently constructed concrete motorway bridges in Greece. According to the relevant metrics, the developed model captures very well the complex interrelations in the dataset and demonstrates strong generalisation capability. Furthermore, it outperforms the linear regression models developed for the same dataset. Therefore, the proposed cost estimation model stands as a useful and reliable tool for the construction industry as it enables planners to reach informed decisions for technical and economic planning of concrete bridge projects from their early implementation stages.
Resumo:
As a newly invented parallel kinematic machine (PKM), Exechon has attracted intensive attention from both academic and industrial fields due to its conceptual high performance. Nevertheless, the dynamic behaviors of Exechon PKM have not been thoroughly investigated because of its structural and kinematic complexities. To identify the dynamic characteristics of Exechon PKM, an elastodynamic model is proposed with the substructure synthesis technique in this paper. The Exechon PKM is divided into a moving platform subsystem, a fixed base subsystem and three limb subsystems according to its structural features. Differential equations of motion for the limb subsystem are derived through finite element (FE) formulations by modeling the complex limb structure as a spatial beam with corresponding geometric cross sections. Meanwhile, revolute, universal, and spherical joints are simplified into virtual lumped springs associated with equivalent stiffnesses and mass at their geometric centers. Differential equations of motion for the moving platform are derived with Newton's second law after treating the platform as a rigid body due to its comparatively high rigidity. After introducing the deformation compatibility conditions between the platform and the limbs, governing differential equations of motion for Exechon PKM are derived. The solution to characteristic equations leads to natural frequencies and corresponding modal shapes of the PKM at any typical configuration. In order to predict the dynamic behaviors in a quick manner, an algorithm is proposed to numerically compute the distributions of natural frequencies throughout the workspace. Simulation results reveal that the lower natural frequencies are strongly position-dependent and distributed axial-symmetrically due to the structure symmetry of the limbs. At the last stage, a parametric analysis is carried out to identify the effects of structural, dimensional, and stiffness parameters on the system's dynamic characteristics with the purpose of providing useful information for optimal design and performance improvement of the Exechon PKM. The elastodynamic modeling methodology and dynamic analysis procedure can be well extended to other overconstrained PKMs with minor modifications.
Resumo:
During extreme sea states so called impact events can be observed on the wave energy converter Oyster. In small scale experimental tests these impact events cause high frequency signals in the measured load which decrease confidence in the data obtained. These loads depend on the structural dynamics of the model. Amplification of the loads can occur and is transferred through the structure from the point of impact to the load cell located in the foundation. Since the determination of design data and load cases for Wave Energy Converters originate from scale experiments, this lack of confidence has a direct effect on the development.
Numerical vibration analysis is a valuable tool in the research of the structural load response of Oyster to impact events, but must take into account the effect of the surrounding water. This can be done efficiently by adding an added mass distribution, computed with a linearised potential boundary element method. This paper presents the development and validation of a numerical procedure, which couples the OpenSource boundary element code NEMOH with the Finite Element Analysis tool CodeAster. Numerical results of the natural frequencies and mode shapes of the structure under the influence of added mass due to specific structural modes are compared with experimental results.
Resumo:
We present a comprehensive model for predicting the full performance of a second harmonic generation-optical parametric amplification system that aims at enhancing the temporal contrast of laser pulses. The model simultaneously takes into account all the main parameters at play in the system such as the group velocity mismatch, the beam divergence, the spectral content, the pump depletion, and the length of the nonlinear crystals. We monitor the influence of the initial parameters of the input pulse and the interdependence of the two related non-linear processes on the performance of the system and show its optimum configuration. The influence of the initial beam divergence on the spectral and the temporal characteristics of the generated pulse is discussed. In addition, we show that using a crystal slightly longer than the optimum length and introducing small delay between the seed and the pump ensures maximum efficiency and compensates for the spectral shift in the optical parametric amplification stage in case of chirped input pulse. As an example, calculations for bandwidth transform limited and chirped pulses of sub-picosecond duration in beta barium borate crystal are presented.
Resumo:
By contrast to the Target Normal Sheath acceleration (TNSA) mechanism [1], Radiation Pressure Acceleration (RPA) is currently attracting a substantial amount of experimental [2,3] and theoretical [4-6] attention worldwide due to its superior scaling in terms of ion energy and laser-ion conversion efficiency. Employing Vulcan Petawatt lasers of the Rutherford Appleton Laboratory, UK, both the Hole-boring (HB) and the Light-Sail (LS) regimes of the RPA have been extensively explored. When the target thickness is of the order of hole-boring velocity times the laser pulse duration, highly collimated plasma jets of near solid density are ejected from the foil, lasting up to ns after the laser interaction. By changing the linear polarisation of the laser to circular, improved homogeneity in the jet's spatial density profile is achieved which suggests more uniform and sustained radiation pressure drive on target ions. By decreasing the target areal density or increasing irradiance on the target, the LS regime of the RPA is accessed where relatively high flux (~ 1012 particles/MeV/Sr) of ions are accelerated to ~ 10 MeV/nucleon energies in a narrow energy bandwidth. The ion energy scaling obtained from the parametric scans agrees well with theoretical estimation based on RPA mechanism and the narrow bandwidth feature in the ion spectra is studied by 2D particle-in-simulations.