59 resultados para O41 - One, Two, and Multisector Growth Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduce an application of matrix factorization to produce corpus-derived, distributional
models of semantics that demonstrate cognitive plausibility. We find that word representations
learned by Non-Negative Sparse Embedding (NNSE), a variant of matrix factorization, are sparse,
effective, and highly interpretable. To the best of our knowledge, this is the first approach which
yields semantic representation of words satisfying these three desirable properties. Though extensive
experimental evaluations on multiple real-world tasks and datasets, we demonstrate the superiority
of semantic models learned by NNSE over other state-of-the-art baselines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report outlines the rationale for the design and implementation of a new life sciences module for year one nursing and midwifery students. It describes our experience to date in running the new module and presents some preliminary results which describe an improved student performance compared to our previous year one bioscience module.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In the paper we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in pre-differentiated iPSCs induced EC marker upregulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong upregulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21 and we showed that PTEN knockdown is required for miR-21 mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the nonlocality of fully inseparable three-mode Gaussian states generated either by bilinear three-mode Hamiltonians or by a sequence of bilinear two-mode Hamiltonians. Two different tests revealing nonlocality are considered, in which the dichotomic Bell operator is represented by the displaced parity and by the pseudospin operator respectively. Three-mode states are also considered as a conditional source of two-mode non-Gaussian states, whose nonlocality properties are analysed. We found that the non-Gaussian character of the conditional states allows violation of Bell's inequalities (by parity and pseudospin tests) stronger than with a conventional twin-beam state. However, the non-Gaussian character is not sufficient to reveal nonlocality through a dichotomized quadrature measurement strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GMM estimation of triangular systems using heteroscedasticity based instrumental variables as in Lewbel (2012).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungal growth inhibition by ethanol was compared with that caused by five other agents of water stress (at 25, 40 and 42.5°C), using Aspergillus oryzae. Ethanol, KCl, glycerol, glucose, sorbitol, and polyethylene glycol 400 were incorporated into media at concentrations corresponding to water activity (a(w)) values in the range 1 to 0.75. Generally, as temperature increased there was a decrease in the a(w) value at which optimum growth occurred. The a(w) limit for growth on KCl, glycerol, glucose, sorbitol, or polyethylene glycol 400 media was about 0.85, regardless of temperature. However, the a(w) limit for growth on ethanol media varied between 0.97 and 0.99 a(w) and was temperature-dependent. Water stress accounted for up to 31, 18 and 6% of growth inhibition by ethanol at 25, 40, and 42.5°C, respectively. For media containing ethanol, the decrease in growth rate per unit of a(w) reduction was greater as temperature increased. However, ethanol-induced water stress remained constant regardless of temperature, suggesting that other inhibitory effects of ethanol are closely temperature- dependent. Water stress may account for considerably more than 30% of growth inhibition by ethanol in cells that remain metabolically active at higher ethanol concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Offspring of women with diabetes mellitus (DM) during pregnancy have a risk of developing metabolic disease in adulthood greater than that conferred by genetics alone. The mechanisms responsible are unknown, but likely involve fetal exposure to the in utero milieu, including glucose and circulating adipokines. The purpose of this study was to assess the impact of maternal DM on fetal adipokines and anthropometry in infants of Hispanic and Native American women.

METHODS: We conducted a prospective study of offspring of mothers with normoglycemia (Con-O; n = 79) or type 2 or gestational DM (DM-O; n = 45) pregnancies. Infant anthropometrics were measured at birth and 1-month of age. Cord leptin, high-molecular-weight adiponectin (HMWA), pigment epithelium-derived factor (PEDF) and C-peptide were measured by ELISA. Differences between groups were assessed using the Generalized Linear Model framework. Correlations were calculated as standardized regression coefficients and adjusted for significant covariates.

RESULTS: DM-O were heavier at birth than Con-O (3.7 ± 0.6 vs. 3.4 ± 0.4 kg, p = 0.024), but sum of skinfolds (SSF) were not different. At 1-month, there was no difference in weight, SSF or % body fat or postnatal growth between groups. Leptin was higher in DM-O (20.1 ± 14.9 vs. 9.5 ± 9.9 ng/ml in Con-O, p < 0.0001). Leptin was positively associated with birth weight (p = 0.0007) and SSF (p = 0.002) in Con-O and with maternal hemoglobin A1c in both groups (Con-O, p = 0.023; DM-O, p = 0.006). PEDF was positively associated with birth weight in all infants (p = 0.004). Leptin was positively associated with PEDF in both groups, with a stronger correlation in DM-O (p = 0.009). At 1-month, HMWA was positively associated with body weight (p = 0.004), SSF (p = 0.025) and % body fat (p = 0.004) across the cohort.

CONCLUSIONS: Maternal DM results in fetal hyperleptinemia independent of adiposity. HMWA appears to influence postnatal growth. Thus, in utero exposure to DM imparts hormonal differences on infants even without aberrant growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in pre-clinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the anti-microbial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC anti-microbial effect in the in vivo model of E.coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct co-culture of MSC with monocyte-derived macrophages (MDMs) enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through TNT-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the anti-microbial effect of MSC in vivo.

Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the anti-microbial effect of MSC in ARDS.