52 resultados para NEUTRON RADIOGRAPHY
Resumo:
Highly anisotropic, beam-like neutron emission with peak flux of the order of 10^9 n/sr was obtained from light nuclei reactions in a pitcher–catcher scenario, by employing MeV ions driven by subpetawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHMdivergence angle of ~70 deg, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher–catcher materials indicates the dominant reactions being d(p, n+p)1Hand d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.
Resumo:
Organic solvents, such as cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene, are widely used as both reagents and solvents in industrial processes. Despite the ubiquity of these liquids, the local structures that govern the chemical properties have not been studied extensively. Herein, we report neutron diffraction measurements on liquid cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene at 298 K to obtain a detailed description of the local structure in these compounds. The radial distribution functions of the centres of the molecules, as well as the partial distribution functions for the double bond for cyclohexene and methyl group for methylcyclohexane and toluene have been calculated. Additionally, probability density functions and angular radial distribution functions were extracted to provide a full description of the local structure within the chosen liquids. Structural motifs are discussed and compared for all liquids, referring specifically to the functional group and aromaticity present in the different liquids.
Resumo:
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed,
showing improvements in the directionality and flux of the laser-driven neutron beams.
Resumo:
The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher–catcher scenario, anisotropy in neutron emission was studied for the deuterium–deuterium fusion reaction. Simulation results are consistent with the narrow-divergence ( ∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.
Resumo:
Total neutron scattering has been used to follow the hydrogenation of toluene-d8 to methylcyclohexane-d14 over 3 wt% platinum supported on highly ordered mesoporous silica (MCM-41) at 298 K and under 150 mbar D2 pressure. The detailed kinetic information so revealed indicates that liquid reorganisation inside pores is the slowest step of the whole process. Additionally, the results were compared with the reaction performed under 250 mbar D2 pressure as well as with toluene-h8 hydrogenation using D2 at 150 mbar.
Resumo:
A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.