54 resultados para Materials at low temperatures


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Orbitally degenerate frustrated spinels, Cd1-xZnxV2O4, with 0 <= x <= 1 were investigated using elastic and inelastic neutron scattering techniques. In the end members with x=0 and 1, a tetragonal distortion (c < a) has been observed upon cooling mediated by a Jahn-Teller distortion that gives rise to orbital ordering. This leads to the formation of spin chains in the ab-plane that upon further cooling, Neel ordering is established due to interchain coupling. In the doped compositions, however, the bulk susceptibility, chi, shows that the macroscopic transitions to cooperative orbital ordering and long-range antiferromagnetic ordering are suppressed. However, the inelastic neutron scattering measurements suggest that the dynamic spin correlations at low temperatures have similar one-dimensional characteristics as those observed in the pure samples. The pair density function analysis of neutron diffraction data shows that the local atomic structure does not become random with doping but rather consists of two distinct environments corresponding to ZnV2O4 and CdV2O4. This indicates that short-range orbital ordering is present which leads to the one-dimensional character of the spin correlations even in the low temperature cubic phase of the doped compositions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Throughout the world the share of wind power in the generation mix is increasing. In the All Island Grid, of the Republic of Ireland and Northern Ireland there is now over 1.5 GW of installed wind power. As the penetration of these variable, non-dispatchable generators increases, power systems are becoming more sensitive to weather events on the supply side as well as on the demand side. In the temperate climate of Ireland, sensitivity of supply to weather is mainly due to wind variability while demand sensitivity is driven by space heating or cooling loads. The interplay of these two weather-driven effects is of particular concern if demand spikes driven by low temperatures coincide with periods of low winds. In December 2009 and January 2010 Ireland experienced a prolonged spell of unusually cold conditions. During much of this time, wind generation output was low due to low wind speeds. The impacts of this event are presented as a case study of the effects of weather extremes on power systems with high penetrations of variable renewable generation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BARTON 1 has suggested that photoelectron interference patterns may be used directly as holograms to obtain atomic-resolution images of surface structures. Bulk structures have been obtained previously by this means from experimental patterns of high-energy Kikuchi(quasi-elastically scattered) and Auger electrons 2,3. Here we test the feasibility of this technique for determination of surface structures using Auger intensity patterns obtained 4,5 from iodine chemisorbed on a pseudomorphic silver monolayer on Pt{111}. By direct numerical holographic inversion, we obtain three-dimensional images which show that iodine adatoms are located in hollows of 3-fold symmetry on the surface. The images yield the site symmetry with good atomic resolution in the surface plane, but suffer from poor resolution along the Ag-I axis. We anticipate that data with better angular resolution obtained at low temperatures would improve the spatial resolution of such images.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature-dependent switching of paramagnetism of a cobalt(ii) complex is observed in an ionic liquid solution. Paramagnetic and thermochromic switching occur simultaneously due to a reversible change in coordination. This reversible switching is possible in the ionic liquid solution, which enables mobility of thiocyanate anions by remaining mobile at low temperatures and acts as an anion reservoir.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On 2011 May 31 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras and also detected it with the Palomar Transient Factory survey, rapidly confirming it to be a Type II SN. Here, we present multi-color ultraviolet through infrared photometry which is used to calculate the bolometric luminosity and a series of spectra. Our early-time observations indicate that SN 2011dh resulted from the explosion of a relatively compact progenitor star. Rapid shock-breakout cooling leads to relatively low temperatures in early-time spectra, compared to explosions of red supergiant stars, as well as a rapid early light curve decline. Optical spectra of SN 2011dh are dominated by H lines out to day 10 after explosion, after which He I lines develop. This SN is likely a member of the cIIb (compact IIb) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~1013 cm) would be highly inconsistent with constraints from our post-explosion spectra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ammoxidation of ethanol is investigated as a renewable process for the production of acetonitrile from a bio-feedstock. Palladium catalysts are shown to be active and very selective (>99%) to this reaction at moderate to low temperatures (150-240 °C), with acetonitrile yields considered a function of Pd morphology. Further investigations reveal that the stability of these catalysts is influenced by an unselective product, and that any deactivation observed is reversible. Interpretation of this deactivation allows operating conditions to be defined for the stable, high yielding production of acetonitrile from ethanol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the first continuous pollen record from the southern Namib Desert spanning the last 50,000 years. Obtained from rock hyrax middens found near the town of Pella, South Africa, these data are used to reconstruct vegetation change and quantitative estimates of temperature and aridity. Results indicate that the last glacial period was characterised by increased water availability at the site relative to the Holocene. Changes in temperature and potential evapotranspiration appear to have played a significant role in determining the hydrologic balance. The record can be considered in two sections: 1) the last glacial period, when low temperatures favoured the development of more mesic Nama-Karoo vegetation at the site, with periods of increased humidity concurrent with increased coastal upwelling, both responding to lower global/regional temperatures; and 2) the Holocene, during which time high temperatures and potential evapotranspiration resulted in increased aridity and an expansion of the Desert Biome. During this latter
period, increases in upwelling intensity created drier conditions at the site.
Considered in the context of discussions of forcing mechanisms of regional climate change and environmental dynamics, the results from Pella stand in clear contrast with many inferences of terrestrial environmental change derived from regional marine records. Observations of a strong precessional signal and interpretations of increased humidity during phases of high local summer insolation in the marine records are not consistent with the data from Pella. Similarly, while high percentages of Restionaceae pollen has been observed in marine sediments during the last glacial period, they do not exceed 1% of the assemblage from Pella, indicating that no significant expansion of the Fynbos Biome has occurred during the last 50,000 years. These findings pose interesting questions regarding the nature of environmental change in southwestern Africa, and the significance of the diverse records that have been obtained from the region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Astrophysics is driven by observations, and in the present era there are a wealth of state-of-the-art ground-based and satellite facilities. The astrophysical spectra emerging from these are of exceptional quality and quantity and cover a broad wavelength range. To meaningfully interpret these spectra, astronomers employ highly complex modelling codes to simulate the astrophysical observations. Important input to these codes include atomic data such as excitation rates, photoionization cross sections, oscillator strengths, transition probabilities and energy levels/line wavelengths. Due to the relatively low temperatures associated with many astrophysical plasmas, the accurate determination of electron-impact excitation rates in the low energy region is essential in generating a reliable spectral synthesis. Hence it is these atomic data, and the main computational methods used to evaluate them, which we focus on in this publication. We consider in particular the complicated open d- shell structures of the Fe-peak ions in low ionization stages. While some of these data can be obtained experimentally, they are usually of insufficient accuracy or limited to a small number of transitions.