65 resultados para LS-DYNA
Resumo:
Context. Absorption or emission lines of Fe II are observed in many astrophysical spectra and accurate atomic data are required to interpret these lines. The calculation of electron-impact excitation rates for transitions among even the lowest lying levels of Fe II is a formidable task for theoreticians.
Aims. In this paper, we present collision strengths and effective collision strengths for electron-impact excitation of Fe II for low-lying forbidden transitions among the lowest 16 fine-structure levels arising from the four LS states 3d(6)4s D-6(e), 3d(7) F-4(e), 3d(6)4s D-4(e), and 3d(7) P-4(e). The effective collision strengths are calculated for a wide range of electron temperatures of astrophysical importance from 30-100 000 K.
Methods. The parallel suite of Breit-Pauli codes are utilised to compute the collision cross sections for electron-impact excitation of Fe II and relativistic terms are included explicitly in both the target and the scattering approximation. 100 LS or 262-jj levels formed from the basis configurations 3d(6)4s, 3d(7), and 3d(6)4p were included in the wavefunction representation of the target, including all doublet, quartet, and sextet terms. Collision strengths for a total of 34191 individual transitions were computed.
Results. A detailed comparison is made with previous theoretical works and significant differences were found to occur in the effective collision strengths, particularly at low temperatures.
Resumo:
In this paper we present oscillator strengths and transition probabilities for W xlv transitions between levels arising from configurations 3d104s2,4p2,4d2, 3d104k4l (k = s,p,d,f and l = p,d,f), 3d94s24l (l = p,d,f) and 3d94s4p2. The model used to calculate these contained all configurations which can be constructed from the available orbitals (up to n = 4), with either a 3d10 or 3d9 core. The calculations were performed with the configuration interaction CIV3 program with the inclusion of relativistic effects achieved through the use of the Breit-Pauli approximation. We compare our ab initio energy levels, oscillator strengths and transition rates with other experimental and theoretical values available in the literature. There is generally good agreement when only levels with 3d10 cores are considered. The literature is sparse for levels in which the 3d-subshell is opened: for the majority of the fine-structure lines considered, there is either no comparison data available or substantial differences are found. This paper also investigates how the inclusion of relativistic effects can result in a significant redistribution of the oscillator strength from the LS calculations.
Resumo:
Porcine circovirus type 2 (PCV2) nucleic acid and/or antigens are consistently observed in cells of monocytic morphology in lesions of pigs affected by post-weaning multisystemic wasting syndrome (PMWS). In this study, PCV2 antigen was detected in the cytoplasm of monocytes, pulmonary macrophages (PMs) and monocyte-derived macrophages exposed to the virus in vitro, by immunofluorescence analysis (IFA) and the phenotype of these cells confirmed by detection of monocytic cell surface markers using flow cytometry. Viral antigen was not observed in lymphocytic cells. Replication of the virus in PMs was investigated further by comparison to that observed in the continuous pig kidney cell line (PK15A) using quantitative virus titration, quantitative PCR and by the detection of double stranded DNA intermediates of viral replication by Southern blotting analyses. Although increases in viral DNA and levels of infectious virus progeny and the presence of replicative intermediates, indicative of viral replication, were observed in PK15A cells, no such changes were observed in PMs in spite of the fact that infectious virus, viral antigen and viral DNA persisted in the cells for at least the duration of the experiment. These results suggest that in vivo, monocytic cells may not represent the primary target for PCV2 replication. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We present a new regime to generate high-energy quasimonoenergetic proton beams in a "slow-pulse" regime, where the laser group velocity vg<c is reduced by an extended near-critical density plasma. In this regime, for properly matched laser intensity and group velocity, ions initially accelerated by the light sail (LS) mode can be further trapped and reflected by the snowplough potential generated by the laser in the near-critical density plasma. These two acceleration stages are connected by the onset of Rayleigh-Taylor-like (RT) instability. The usual ion energy spectrum broadening by RT instability is controlled and high quality proton beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 1021W/cm2.
Resumo:
Purpose
To evaluate the impact of the position of an asymmetric multifocal near segment on visual quality.
Setting
Cathedral Eye Clinic, Belfast, United Kingdom.
Design
Retrospective comparative case series.
Methods
Data from consecutive patients who had bilateral implantation of the Lentis Mplus LS-312 multifocal intraocular lens were divided into 2 groups. One group received inferonasal near-segment placement and the other, superotemporal near-segment placement. A +3.00 diopter (D) reading addition (add) was used in all eyes. The main outcome measures included uncorrected distance visual acuity (UDVA), uncorrected near visual acuity (UNVA), contrast sensitivity, and quality of vision. Follow-up was 3 months.
Results
Patients ranged in age from 43 to 76 years. The inferonasal group comprised 80 eyes (40 patients) and the superotemporal group, 76 eyes (38 patients). The mean 3-month spherical equivalent was −0.11 D ± 0.49 (SD) in the inferonasal group and −0.18 ± 0.46 D in the superotemporal group. The mean postoperative UDVA was 0.14 ± 0.10 logMAR and 0.18 ± 0.15 logMAR, respectively. The mean monocular UNVA was 0.21 ± 0.14 logRAD and 0.24 ± 0.13 logRAD, respectively. No significant differences were observed in the higher-order aberrations, total Strehl ratio (point-spread function), or modulation transfer function between the groups. Dysphotopic symptoms measured with a validated quality-of-vision questionnaire were not significantly different between groups.
Conclusion
Positioning of the near add did not significantly affect objective or subjective visual function parameters.
Resumo:
A prototype scotopic sensitivity machine was used to evaluate pupillary and visual thresholds for 295 Indonesian children aged 1-5 y, most of whom were initially vitamin A-deficient. Subjects were tested 6 and 9 mo after receiving a high dose of vitamin A. A group of 136 older children was tested at 6 mo after dosing; all subjects underwent testing at 9 mo. After testing at 9 mo, children randomly received either a second high dose of vitamin A or placebo and were tested a final time 2 wk later. Children with abnormal pupillary thresholds had significantly higher relative dose responses (RDRs) (P < 0.01) and significantly lower serum retinol values (P = 0.05) than did normal children. The mean pupillary threshold rose (eg, retinal sensitivity fell) as vitamin A status deteriorated between 6 and 9 mo after initial dosing, and was significantly different from a group of normal American children tested previously (P < 0.001). After placebo-controlled dosing, the decline in pupillary and visual thresholds (rise in retinal sensitivity) was significant for children receiving vitamin A but not for children receiving placebo.
Resumo:
BACKGROUND: Impaired dark adaptation occurs commonly in vitamin A deficiency. OBJECTIVE: We sought to examine the responsiveness of dark-adaptation threshold to vitamin A and beta-carotene supplementation in Nepali women. DESIGN: The dark-adapted pupillary response was tested in 298 pregnant women aged 15-45 y in a placebo-controlled trial of vitamin A and beta-carotene; 131 of these women were also tested at 3 mo postpartum. Results were compared with those for 100 nonpregnant US women of similar age. The amount of light required for pupillary constriction was recorded after bleaching and dark adaptation. RESULTS: Pregnant women receiving vitamin A had better dark-adaptation thresholds (-1.24 log cd/m(2)) than did those receiving placebo (-1.11 log cd/m(2); P: = 0. 03) or beta-carotene (-1.13 log cd/m(2); P: = 0.05) (t tests with Bonferroni correction). Dark-adaptation threshold was associated with serum retinol concentration in pregnant women receiving placebo (P: = 0.001) and in those receiving beta-carotene (P: = 0.003) but not in those receiving vitamin A. Among women receiving placebo, mean dark-adaptation thresholds were better during the first trimester (-1.23 log cd/m(2)) than during the second and third trimesters (-1.03 log cd/m(2); P: = 0.02, t test). The mean threshold of nonpregnant US women (-1.35 log cd/m(2)) was better than that of all 3 Nepali groups (P: < 0.001, t test, for all 3 groups). CONCLUSIONS: During pregnancy, pupillary dark adaptation was strongly associated with serum retinol concentration and improved significantly in response to vitamin A supplementation. This noninvasive testing technique is a valid indicator of population vitamin A status in women of reproductive age.
Resumo:
PURPOSE: To evaluate the agreement between optical low-coherence reflectometry (OLCR) and anterior segment optical coherence tomography (AS-OCT) for biometry of the anterior segment. SETTING: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China. DESIGN: Evaluation of diagnostic technology. METHODS: A series of OLCR (Lenstar LS 900) and AS-OCT measurements of the anterior segment were taken for consecutive subjects aged 35 years and older in a population-based study. The differences and correlations between the 2 methods of ocular biometry were assessed. Agreement was calculated as the 95% limits of agreement (LoA). RESULTS: The mean age of the 776 subjects was 55.2 years ± 12.0 (SD); 54.6% were women. The mean central corneal thickness (CCT) was smaller with OLCR than with AS-OCT (537.84 ± 31.46 μm versus 559.39 ± 32.02 μm) as was anterior chamber depth (ACD) (2.60 ± 0.37 mm versus 2.72 ± 0.37 mm) and anterior chamber width (ACW) (11.76 ± 0.47 mm versus 12.04 ± 0.55 mm) (all P<.001). The 95% LoA between the 2 instruments were -44.80 to 1.71 μm for CCT, -0.17 to -0.06 mm for ACD, and -1.28 to 0.72 mm for ACW. CONCLUSION: Optical low-coherence reflectometry and AS-OCT yielded potentially interchangeable ACD measurements, while the CCT and ACW measurements acquired by the 2 devices showed clinically significant differences.
Resumo:
Expectations of migration and mobility steadily increasing in the longer term, which have a long currency in migration theory and related social science, are at odds with the latest US research showing a marked decline in internal migration rates. This paper reports the results of research that investigates whether England and Wales have experienced any similar change in recent decades. Using the Office for National Statistics Longitudinal Study (ONS-LS) of linked census records, it examines the evidence provided by its 10-year migration indicator, with particular attention to a comparison of the first and latest decades available, 1971-1981 and 2001-2011. This suggests that, as in the USA, there has been a marked reduction in the level of shorter-distance (less than 10km) moving that has involved almost all types of people. In contrast to this and to US experience, however, the propensity of people to make longer-distance address changes between decennial censuses has declined much less, largely corroborating the results of a companion study tracking the annual trend in rates of between-area migration since the 1970s (Champion and Shuttleworth, 2016).
Resumo:
For a number of years, there has been a major effort to calculate electron-impact excitation data for every ion stage of iron embodied by the ongoing efforts of the IRON project by Hummer et al (1993 Astron. Astrophys. 279 298). Due to the complexity of the targets, calculations for the lower stages of ionization have been limited to either intermediate-coupling calculations within the ground configurations or LS -coupling calculations of the ground and excited configurations. However, accurate excitation data between individual levels within both the ground and excited configurations of the low charge-state ions are urgently required for applications to both astrophysical and laboratory plasmas. Here we report on the results of the first intermediate-coupling R -matrix calculation of electron-impact excitation for Fe 4+ for which the close-coupling (CC) expansion includes not only those levels of the 3d 4 ground configuration, but also the levels of the 3d 3 4s, 3d 3 4p, 3d 3 4d and 3d 2 4s 2 excited configurations. With 359 levels in the CC expansion and over 2400 scattering channels for many of the J Π partial waves, this represents the largest electron–ion scattering calculation to date and it was performed on massively parallel computers using a recently developed set of relativistic parallel R -matrix programs.
Resumo:
The LS R-matrix method was used to compute new photoionization cross sections for Fe II. Results are compared with available experimental data and with previous calculations of the cross section. We also present the first fine-structure photoionization data for this ion obtained with the fully-relativistic DARC codes.
Resumo:
Electron-impact ionization cross sections for argon are calculated using both non-perturbative R-matrix with pseudo-states (RMPS) and perturbative distorted-wave methods. At twice the ionization potential, the 3p(61)S ground-term cross section from a distorted-wave calculation is found to be a factor of 4 above crossed-beams experimental measurements, while with the inclusion of term-dependent continuum effects in the distorted-wave method, the perturbative cross section still remains almost a factor of 2 above experiment. In the case of ionization from the metastable 3p(5)4s(3)P term, the distorted-wave ionization cross section is also higher than the experimental cross section. On the other hand, the ground-term cross section determined from a nonperturbative RMPS calculation that includes 27 LS spectroscopic terms and another 282 LS pseudo-state terms to represent the high Rydberg states, and the target continuum is found to be in excellent agreement with experimental measurements, while the RMPS result is below the experimental cross section for ionization from the metastable term. We conclude that both continuum term dependence and interchannel coupling effects, which are included in the RMPS method, are important for ionization from the ground term, and interchannel coupling is also significant for ionization from the metastable term
Resumo:
Accurate knowledge of the electron-impact ionization of the B atom is urgently needed in current fusion plasma experiments to help design ITER wall components. Since no atomic measurements exist, nonperturba- tive time-dependent close-coupling (TDCC) calculations are carried out to accurately determine the direct ionization cross sections of the outer two subshells of B. Perturbative distorted-wave and semiempirical binary encounter calculations are found to yield cross sections from 26% lower to an order of magnitude higher than the current TDCC results. Unlike almost all neutral atoms, large excitation-autoionization contributions are found for the B atom. Nonperturbative R matrix with pseudostates (RMPS) calculations are also carried out to accurately determine the total ionization cross section of B. Previous 60 LS-term RMPS calculations are found to yield cross sections up to 40% higher than the current more extensive 476 LS-term RMPS results
Resumo:
A recent measurement of the dielectronic recombination (DR) of W20+ [Schippers et al., Phys.Rev.A 83, 012711 (2011)] found an exceptionally large contribution from near-threshold resonances (1 eV). This still affected the Maxwellian rate coefficient at much higher temperatures. The experimental result was found to be higher by a factor of 4 or more than that currently in use in the 100- to 300-eV range, which is of relevance for modeling magnetic fusion plasmas. We have carried out DR calculations with AUTOSTRUCTURE which include all significant single-electron promotions. Our intermediate-coupling (IC) results are more than a factor of 4 larger than our LS-coupling ones at 1 eV but still lie a factor of 3 below experiment here. If we assume complete (chaotic)mixing of near-threshold autoionizing states, then our results come into agreement (to within 20%)with experiment below 2 eV. Our total IC Maxwellian rate coefficients are 50%–30% smaller than those based on experiment over 100–300 eV.
Resumo:
Effective collision strengths for electron-impact excitation of the phosphorus-like ion Cl III are presented for all fine-structure transitions among the levels arising from the lowest 23 LS states. The collisional cross sections are computed in the multichannel close-coupling R-matrix approximation, where sophisticated configuration-interaction wave functions are used to represent the target states. The 23 LS states are formed from the basis configurations 3s23p3, 3s3p4, 3s23p23d, and 3s23p24s, and correspond to 49 fine-structure levels, leading to a total possible 1176 fine-structure transitions. The effective collision strengths, obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities, are tabulated in this paper for all 1176 transitions and for electron temperatures in the ranges T(K)=7500-25,000 and log T(K)=4.4-5.4. The former range encompasses the temperatures of particular importance for application to gaseous nebulae, while the latter range is more applicable to the study of solar and laboratory-type plasmas. © 2001 Academic Press.