56 resultados para Indium hydroxide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indium trichloride catalysed Diels-Alder reaction of imines derived from anilines with cyclic enamides regioselectively gave the biologically important pyrroloquinoline nucleus, with a cis ring junction, in moderate yield. Although the euo:endo selectivity was in most cases poor, these isomers are readily separated by flash chromatography. The functionality tolerated at both C2 and C7 should allow further elaboration to Martinelline (C) 1999 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED: Cyclic-di-GMP is a near-ubiquitous bacterial second messenger that is important in localized signal transmission during the control of various processes, including virulence and switching between planktonic and biofilm-based lifestyles. Cyclic-di-GMP is synthesized by GGDEF diguanylate cyclases and hydrolyzed by EAL or HD-GYP phosphodiesterases, with each functional domain often appended to distinct sensory modules. HD-GYP domain proteins have resisted structural analysis, but here we present the first structural representative of this family (1.28 Å), obtained using the unusual Bd1817 HD-GYP protein from the predatory bacterium Bdellovibrio bacteriovorus. Bd1817 lacks the active-site tyrosine present in most HD-GYP family members yet remains an excellent model of their features, sharing 48% sequence similarity with the archetype RpfG. The protein structure is highly modular and thus provides a basis for delineating domain boundaries in other stimulus-dependent homologues. Conserved residues in the HD-GYP family cluster around a binuclear metal center, which is observed complexed to a molecule of phosphate, providing information on the mode of hydroxide ion attack on substrate. The fold and active site of the HD-GYP domain are different from those of EAL proteins, and restricted access to the active-site cleft is indicative of a different mode of activity regulation. The region encompassing the GYP motif has a novel conformation and is surface exposed and available for complexation with binding partners, including GGDEF proteins.

IMPORTANCE: It is becoming apparent that many bacteria use the signaling molecule cyclic-di-GMP to regulate a variety of processes, most notably, transitions between motility and sessility. Importantly, this regulation is central to several traits implicated in chronic disease (adhesion, biofilm formation, and virulence gene expression). The mechanisms of cyclic-di-GMP synthesis via GGDEF enzymes and hydrolysis via EAL enzymes have been suggested by the analysis of several crystal structures, but no information has been available to date for the unrelated HD-GYP class of hydrolases. Here we present the multidomain structure of an unusual member of the HD-GYP family from the predatory bacterium Bdellovibrio bacteriovorus and detail the features that distinguish it from the wider structural family of general HD fold hydrolases. The structure reveals how a binuclear iron center is formed from several conserved residues and provides a basis for understanding HD-GYP family sequence requirements for c-di-GMP hydrolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High resolution synchrotron radiation core level photoemission measurements have been used to undertake a comparative study of the high temperature stability of ultrathin Al2O3 layers deposited by atomic layer deposition (ALD) on both sulphur passivated and native oxide covered InGaAs. The residual interfacial oxides between sulphur passivated InGaAs and the ultrathin Al2O3 layer can be substantially removed at high temperature (up to 700 °C) without impacting on the InGaAs stoichiometry while significant loss of indium was recorded at this temperature on the native oxide InGaAs surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater reservoir effects (FRE) can cause a major problem with radiocarbon dating human skeletal material in the Eurasian steppe. We present the first results of research into the extent of the FRE in the sites of Borly 4 (Eneolithic), and Shauke 1 and 8b (Early Bronze Age), North-Eastern Kazakhstan. AMS 14C dating and stable isotope (δ13C, δ15N) analysis of associated groups of samples (32 samples, 11 groups in total) demonstrate that: a) the diet of the humans and fauna analysed was based on the C3 foodchain with no evidence of a C4 plant (such as millet) contribution; aquatic resources apparently were a continuous dietary feature for the humans; b) the first 14C dates obtained for the Upper and Middle Irtysh River region attribute the Eneolithic period of the area to the 34th-30th c. BC, and the Early Bronze Age – to the 25th-20th c. BC; there is a ca. 450 years hiatus between the two periods; c) the maximum fish-herbivore freshwater reservoir offset observed equals 301±47 14C yrs. As such, 14C dates from aquatic and human samples from the area need to be interpreted with caution as they are likely to be affected by the offset (i.e. appear older).
The paper also discusses the effect of a sodium hydroxide (NaOH) wash on δ13C, δ15N, C:Natomic levels and collagen yields of the bone samples. Our results indicate a minor but significant effect of NaOH treatment only on C:Natomic ratios of the samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of the construction industry worldwide poses a serious concern on the sustainability of the building material production chain, mainly due to the carbon emissions related to the production of Portland cement. On the other hand, valuable materials from waste streams, particularly from the metallurgical industry, are not used at their full potential. Alkali activated concrete (AAC) has emerged in the last years as a promising alternative to traditional Portland cement based concrete for some applications. However, despite showing remarkable strength and durability potential, its utilisation is not widespread, mainly due to the lack of broadly accepted standards for the selection of suitable mix recipes fulfilling design requirements, in particular workability, setting time and strength. In this paper, a contribution towards the design development of AAC synthetized from pulverised fuel ash (60%) and ground granulated blast furnace slag (40%) activated with a solution of sodium hydroxide and sodium silicate is proposed. Results from a first batch of mixes indicated that water content influences the setting time and that paste content is a key parameter for controlling strength development and workability. The investigation indicated that, for the given raw materials and activator compositions, a minimum water to solid (w/s) ratio of 0.37 was needed for an initial setting time of about 1 hour. Further work with paste content in the range of 30% to 33% determined the relationship between workability and strength development and w/s ratio and paste content. Strengths in the range of 50 - 60 MPa were achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several factors affecting the reactivity of pulverised fuel ash (pfa) as a precursor for geopolymer concrete have been investigated. These include physical and chemical properties of various pfa sources, inclusion of ground granulated blast furnace slag (ggbs), chemical activator dosages and curing temperature. Alkali-activated pfa was found to require elevated curing temperatures and high alkali concentrations. A mixture of sodium hydroxide and sodium silicate was used and this was shown to result in high strengths, as high as 70 MPa at 28-days. The presence of silicates in solution was found to be a key factor. Detailed physical and chemical characterisation was carried out on thirteen pfa sources from the UK. The most important factor affecting the reactivity was found to be the particle size of pfa. The loss on ignition (LOI) and the amorphous content are also important parameters that need to be considered for the selection of pfa for use in geopolymer concrete. The partial replacement of pfa by ground granulated blast furnace slag (ggbs) was found to be beneficial in not only avoiding the need for elevated curing temperatures but also in improving compressive strengths. Microstructural characterisation with scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) was performed on pfa/ggbs pastes. The reaction product of pfa and ggbs in these binary systems was calcium aluminium silicate hydrate gel (C-A-S-H) with inclusion of Na in the structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ternary compounds of copper indium selenide nano- and microsized materials were prepared through colloidal synthesis using an indium(III) selenide precursor and copper(I) chloride via a microwave-assisted ionothermal route. The indium(III) selenide precursor used in the reaction was formed in situ from a diphenyl diselenide precursor and chloroindate(III) ionic liquids (ILs), also via a microwave-assisted ionothermal route. The crystal structures of three intermediates, namely, CuCl2(OMe)2(H2O)){Cu(PhSeO2)2}n, [CuCl(Se2Ph2)2]n, and [C8mim]3{Cu(I)Cl2Cu(II)OCl8}n, were determined after formation through a ionothermal procedure utilizing metal-containing imidazolium ILs and a selenium precursor with conventional heating. Herein, we compare the use of microwave irradiation over conventional heating with different ILs on the stoichiometry of the resulting products. The influence of the reaction temperature, reaction time, order of addition of reagents, and variation of ILs, which were characterized using PXRD, SEM, and EDX, on the final products was investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkali activated binders, based on ash and slag, also known as geopolymers, can play a key role in reducing the carbon footprint of the construction sector by replacing ordinary Portland cement in some concretes. Since 1970s, research effort has been ongoing in many research institutions. In this study, pulverized fuel ash (pfa) from a UK power plant, ground granulated blast furnace slag (ggbs) and combinations of the two have been investigated as geopolymer binders for concrete applications. Activators used were sodium hydroxide and sodium silicate solutions. Mortars with sand/binder ratio of 2.75 with several pfa and ggbs combinations have been mixed and tested. The optimization of alkali dosage (defined as the Na2O/binder mass ratio) and modulus (defined as the Na2O/SiO2 mass ratio) resulted in strengths in excess of 70 MPa for tested mortars. Setting time and workability have been considered for the identification of the best combination of pfa/ggbs and alkali activator dosage for different precast concrete products. Geopolymer concrete building blocks have been replicated in laboratory and a real scale factory trial has been successfully carried out. Ongoing microstructural characterization is aiming to identify reaction products arising from pfa/ggbs combinations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly-sensitive optical fluorescent extruded plastic films are reported for the detection of gaseous and dissolved CO2. The pH-sensitive fluorescent dye used is 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS, PTS-) coated on the surface of hydrophilic fumed silica and the base is tetrabutylammonium hydroxide (TBAH). The above components are used to create an HPTS pigment (i.e. HPTS/SiO2/TBAH) with a high CO2 sensitivity (%CO2(S=1/2) = 0.16%) and fast 50% response (t50↓) = 2 s and recovery (t50↑) = 5 s times. Highly CO2-sensitive plastic films are then fabricated, via the extrusion of the HPTS pigment powder in low-density polyethylene (LDPE). As with the HPTS-pigment, the luminescence intensity (at 515 nm) and absorbance (at 475 nm) of the HPTS plastic film decreases as the %CO2 in the ambient gas phase increases. The HPTS plastic film exhibits a high CO2 sensitivity, %CO2(S=1/2), of 0.29%, but a response time ˂2 min and recovery time ˂40 min, which is slower than that of the HPTS pigment. The HPTS plastic film is very stable under ambient conditions, (with a shelf life ˃ six month when stored in the dark but under otherwise ambient conditions). Moreover, the HPTS-film is stable in water, salt solution and even in acid (pH=2), and in each of these media it can be used to detect dissolved CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High resolution synchrotron radiation core level photoemission measurements have been used to undertake a comparative study ofthe high temperature thermal stability ofthe ammonium sulphide passivated InGaAs surface and the same surface following the atomic layer deposition (ALD) of an ultrathin (∼1 nm) Al2O3 layer. The solution based ex situ sulphur passivation was found to be effective at removing a significant amount of the native oxides and protecting the surface against re-oxidation upon air exposure. The residual interfacial oxides which form between sulphur passivated InGaAs and the ultrathin Al2O3 layer can be substantially removed at high temperature (up to 700 ◦C) without impacting on the InGaAs stoichiometry while significant loss of indium was recorded at this temperature on the uncovered sulphur passivated InGaAs surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution soft x-ray photoemission spectroscopy (SXPS) has been used to study the high-temperature thermal stability of ultra-thin atomic layer deposited (ALD) Al2O3 layers (~1 nm) on sulfur passivated and native oxide covered InAs surfaces. While the arsenic oxides were removed from both interfaces following a 600 °C anneal, a residual indium oxide signal remained. No significant differences were observed between the sulfur passivated and native oxide surfaces other than the thickness of the interfacial oxide layer while the Al2O3 stoichiometry remained unaffected by the anneals. The energy band offsets were determined for the Al2O3 on the sulfur passivated InAs surface using both valence band edge and shallow core-level photoemission measurements.