91 resultados para Glycogen Synthase Kinase 3


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The purpose of this study was to assess the efficacy and safety of ISIS 3521, an antisense phosphorothioate oligonucleotide to protein kinase C in patients with relapsed low-grade non-Hodgkin's lymphoma (NHL). Patients and methods: Twenty-six patients received ISIS 3521 (2 mg/kg/day) as a continuous infusion over 21 days of each 28-day cycle. Results: The median age of the patients was 53 years (range 37–77). Histological subtypes were low-grade follicular lymphoma (n=22) and B-cell small lymphocytic lymphoma (n=4). Twenty-one (81%) had stage III/IV disease. The median number of previous lines of chemotherapy was two (range one to six). A total of 87 cycles of ISIS 3521 were administered. Twenty-three patients were assessable for response. Three patients achieved a partial response. No complete responses were observed. Ten patients had stable disease. Grade 3–4 toxicity was as follows: neutropenia (3.8%) and thrombocytopenia (26.9%). Conclusions: ISIS 3521 has demonstrated anti-tumour activity in patients with relapsed low-grade NHL. There may be a potential role for this agent in combination with conventional chemotherapy for advanced low-grade lymphoma, and further trials are warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The somatic JAK2 valine-to-phenylalanine (V617F) mutation has been detected in up to 90% of patients with polycythemia and in a sizeable proportion of patients with other myeloproliferative disorders such as essential thrombocythemia and idiopathic myelofibrosis. Suppressor of cytokine signaling 3 (SOCS3) is known to be a strong negative regulator of erythropoietin (EPO) signaling through interaction with both the EPO receptor (EPOR) and JAK2. We report here that JAK2 V617F cannot be regulated and that its activation is actually potentiated in the presence of SOCS3. Instead of acting as a suppressor, SOCS3 enhanced the proliferation of cells expressing both JAK2 V617F and EPOR. Additionally, although SOCS1 and SOCS2 are degraded in the presence of JAK2 V617F, turnover of SOCS3 is inhibited by the JAK2 mutant kinase and this correlated with marked tyrosine phosphorylation of SOCS3 protein. We also observed constitutive tyrosine phosphorylation of SOCS3 in peripheral blood mononuclear cells (PBMCs) derived from patients homozygous for the JAK2 V617F mutant. These findings suggest that the JAK2 V617F has overcome normal SOCS regulation by hyperphosphorylating SOCS3, rendering it unable to inhibit the mutant kinase. Thus, JAK2 V617F may even exploit SOCS3 to potentiate its myeloproliferative capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Although severe encephalopathy has been proposed as a possible contraindication to the use of noninvasive positive-pressure ventilation (NPPV), increasing clinical reports showed it was effective in patients with impaired consciousness and even coma secondary to acute respiratory failure, especially hypercapnic acute respiratory failure (HARF). To further evaluate the effectiveness and safety of NPPV for severe hypercapnic encephalopathy, a prospective case-control study was conducted at a university respiratory intensive care unit (RICU) in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) during the past 3 years. METHODS: Forty-three of 68 consecutive AECOPD patients requiring ventilatory support for HARF were divided into 2 groups, which were carefully matched for age, sex, COPD course, tobacco use and previous hospitalization history, according to the severity of encephalopathy, 22 patients with Glasgow coma scale (GCS) <10 served as group A and 21 with GCS = 10 as group B. RESULTS: Compared with group B, group A had a higher level of baseline arterial partial CO2 pressure ((102 +/- 27) mmHg vs (74 +/- 17) mmHg, P <0.01), lower levels of GCS (7.5 +/- 1.9 vs 12.2 +/- 1.8, P <0.01), arterial pH value (7.18 +/- 0.06 vs 7.28 +/- 0.07, P <0.01) and partial O(2) pressure/fraction of inspired O(2) ratio (168 +/- 39 vs 189 +/- 33, P <0.05). The NPPV success rate and hospital mortality were 73% (16/22) and 14% (3/22) respectively in group A, which were comparable to those in group B (68% (15/21) and 14% (3/21) respectively, all P > 0.05), but group A needed an average of 7 cm H2O higher of maximal pressure support during NPPV, and 4, 4 and 7 days longer of NPPV time, RICU stay and hospital stay respectively than group B (P <0.05 or P <0.01). NPPV therapy failed in 12 patients (6 in each group) because of excessive airway secretions (7 patients), hemodynamic instability (2), worsening of dyspnea and deterioration of gas exchange (2), and gastric content aspiration (1). CONCLUSIONS: Selected patients with severe hypercapnic encephalopathy secondary to HARF can be treated as effectively and safely with NPPV as awake patients with HARF due to AECOPD; a trial of NPPV should be instituted to reduce the need of endotracheal intubation in patients with severe hypercapnic encephalopathy who are otherwise good candidates for NPPV due to AECOPD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclin D3 is found to play a crucial role not only in progression through the G1 phase as a regulatory subunit of cyclin-dependent kinase 4 (CDK 4) and CDK 6, but also in many other aspects such as cell cycle, cell differentiation, transcriptional regulation and apoptosis. In this work, we screened a human fetal liver cDNA library using human cyclin D3 as bait and identified human eukaryotic initiation factor 3 p28 protein (eIF3k) as a partner of cyclin D3. The association of cyclin D3 with eIF3k was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscopic analysis. We found that cyclin D3 specifically interacted with eIF3k through its C-terminal domain. Immunofluorescence experiments showed that eIF3k distributed both in nucleus and cytoplasm and colocalized with cyclin D3. In addition, the cellular translation activity in HeLa cells was upregulated by cyclin D3 overexpression and the mRNA levels are constant. These data provide a new clue to our understanding of the cellular function of cyclin D3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incidence of esophageal adenocarcinoma has increased in recent years, and Barrett's esophagus is a recognized risk factor. Gastroesophageal reflux of acid and/or bile is linked to these conditions and to reflux esophagitis. Inflammatory disorders can lead to carcinogenesis through activation of "prosurvival genes," including cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Increased expression of these enzymes has been found in esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Polymorphic variants in COX-2 and iNOS genes may be modifiers of risk of these conditions. In a population-based case-control study, we examined associations of the COX-2 8473 T>C and iNOS Ser 608 Leu (C>T) polymorphisms with risk of esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Genomic DNA was extracted from blood samples collected from cases of esophageal adenocarcinoma (n = 210), Barrett's esophagus (n = 212), and reflux esophagitis (n = 230) and normal population controls frequency matched for age and sex (n = 248). Polymorphisms were genotyped using TaqMan allelic discrimination assays. Odds ratios and 95% confidence intervals were obtained from logistic regression models adjusted for potential confounding factors. The presence of at least one COX-2 8473 C allele was associated with a significantly increased risk of esophageal adenocarcinoma (adjusted odds ratio, 1.58; 95% confidence interval, 1.04-2.40). There was no significant association between this polymorphism and risk of Barrett's esophagus or reflux esophagitis or between the iNOS Ser 608 Leu polymorphism and risk of these esophageal conditions. Our study suggests that the COX-2 8473 C allele is a potential genetic marker for susceptibility to esophageal adenocarcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leukocyte-derived matrix metalloproteinases (MMP) are implicated in the tissue destruction characteristic of tuberculosis (TB). The contribution of lung stromal cells to MMP activity in TB is unknown. Oncostatin M (OSM) is an important stimulus to extrapulmonary stromal MMP induction, but its role in regulation of pulmonary MMP secretion or pathophysiology of TB is unknown. We investigated OSM secretion from Mycobacterium tuberculosis (Mtb)-infected human monocytes/macrophages and the networking effects of such OSM on lung fibroblast MMP secretion. Mtb increased monocyte OSM secretion dose dependently in vitro. In vivo tuberculous granulomas immunostained positively for OSM. Further, conditioned media from Mtb-infected monocytes (CoMTb) induced monocyte OSM secretion (670 ± 55 versus 166 ± 14 pg/mL in controls), implicating an autocrine loop. Mtb-induced OSM secretion was prostaglandin (PG) sensitive, and required activation of surface G-protein coupled receptors. OSM induction was ERK MAP kinase dependent, p38-requiring but JNK-independent. OSM synergized with TNF-, a key cytokine in TB granuloma formation, to stimulate pulmonary fibroblast MMP-1/-3 secretion, while suppressing secretion of tissue inhibitors of metalloproteinases-1/-2. In summary, Mtb infection of monocytes results in PG-dependent OSM secretion, which synergizes with TNF- to drive functionally unopposed fibroblast MMP-1/-3 secretion, demonstrating a previously unrecognized role for OSM in TB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OSI-7904L is a liposomal formulation of a potent thymidylate synthase (TS) inhibitor. This phase I study evaluated the safety, tolerability and pharmacokinetics (PK) of OSI-7904L administered in combination with oxaliplatin every 21 days in patients with advanced colorectal carcinoma. METHOD: A 3+3 study design was utilized at predefined dose levels. Polymorphisms in the TS enhancer region and XPD enzyme were investigated as potential predictors of efficacy and toxicity. RESULTS: Fourteen patients received 76 cycles of treatment. At the highest dose level (OSI-7904L 9 mg/m(2), oxaliplatin 130 mg/m(2)) investigated, one of nine patients experienced dose-limiting toxicity of grade 3 oral mucositis with cycle 1 and five further patients required dose reductions. The toxicity profile of stomatitis, diarrhea, nausea, fatigue, sensory neuropathy and skin rash was consistent with that expected for a TS inhibitor/oxaliplatin combination regimen. PK analysis showed high interpatient variability with no detectable interaction between OSI-7904L and oxaliplatin. Partial radiological responses were documented in two patients. CONCLUSIONS: The recommended regimen for further investigation is OSI-7904L 9 mg/m(2) and oxaliplatin 130 mg/m(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evasion of DNA damage-induced cell death, via mutation of the p53 tumor suppressor or overexpression of prosurvival Bcl-2 family proteins, is a key step toward malignant transformation and therapeutic resistance. We report that depletion or acute inhibition of checkpoint kinase 1 (Chk1) is sufficient to restore ?-radiation-induced apoptosis in p53 mutant zebrafish embryos. Surprisingly, caspase-3 is not activated prior to DNA fragmentation, in contrast to classical intrinsic or extrinsic apoptosis. Rather, an alternative apoptotic program is engaged that cell autonomously requires atm (ataxia telangiectasia mutated), atr (ATM and Rad3-related) and caspase-2, and is not affected by p53 loss or overexpression of bcl-2/xl. Similarly, Chk1 inhibitor-treated human tumor cells hyperactivate ATM, ATR, and caspase-2 after ?-radiation and trigger a caspase-2-dependent apoptotic program that bypasses p53 deficiency and excess Bcl-2. The evolutionarily conserved "Chk1-suppressed" pathway defines a novel apoptotic process, whose responsiveness to Chk1 inhibitors and insensitivity to p53 and BCL2 alterations have important implications for cancer therapy. © 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tumor suppressor p53 is commonly inhibited under conditions in which the phosphatidylinositide 3'-OH kinase/protein kinase B (PKB) Akt pathway is activated. Intracellular levels of p53 are controlled by the E3 ubiquitin ligase Mdm2. Here we show that PKB inhibits Mdm2 self-ubiquitination via phosphorylation of Mdm2 on Ser(166) and Ser(188). Stimulation of human embryonic kidney 293 cells with insulin-like growth factor-1 increased Mdm2 phosphorylation on Ser(166) and Ser(188) in a phosphatidylinositide 3'-OH kinase-dependent manner, and the treatment of both human embryonic kidney 293 and COS-1 cells with phosphatidylinositide 3'-OH kinase inhibitor LY-294002 led to proteasome-mediated Mdm2 degradation. Introduction of a constitutively active form of PKB together with Mdm2 into cells induced phosphorylation of Mdm2 at Ser(166) and Ser(188) and stabilized Mdm2 protein. Moreover, mouse embryonic fibroblasts lacking PKBalpha displayed reduced Mdm2 protein levels with a concomitant increase of p53 and p21(Cip1), resulting in strongly elevated apoptosis after UV irradiation. In addition, activation of PKB correlated with Mdm2 phosphorylation and stability in a variety of human tumor cells. These findings suggest that PKB plays a critical role in controlling of the Mdm2.p53 signaling pathway by regulating Mdm2 stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full activation of protein kinase B (PKB, also called Akt) requires phosphorylation on two regulatory sites, Thr-308 in the activation loop and Ser-473 in the hydrophobic C-terminal regulatory domain (numbering for PKB alpha /Akt-1), Although 3 ' -phosphoinositide-dependent protein kinase 1 (PDK1) has now been identified as the Thr-308 kinase, the mechanism of the Ser-473 phosphorylation remains controversial. As a step to further characterize the Ser-473 kinase, we examined the effects of a range of protein kinase inhibitors on the activation and phosphorylation of PKB. We found that staurosporine, a broad-specificity kinase inhibitor and inducer of cell apoptosis, attenuated PKB activation exclusively through the inhibition of Thr-308 phosphorylation, with Ser-473 phosphorylation unaffected. The increase in Thr-308 phosphorylation because of overexpression of PDK1 was also inhibited by staurosporine, We further show that staurosporine (CGP 39360) potently inhibited PDK1 activity in vitro with an IC50 of similar to0.22 muM. These data indicate that agonist-induced phosphorylation of Ser-473 of PKB is independent of PDK1 or PKB activity and occurs through a distinct Ser-473 kinase that is not inhibited by staurosporine, Moreover, our results suggest that inhibition of PKB signaling is involved in the proapoptotic action of staurosporine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal–regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase–dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas.STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-B–binding site abrogated promoter induction in response to CoMTb. TNF-, IL-1ß, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-B, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-Acetylgalactosamine kinase (GALK2) is a small molecule kinase from the GHMP family which phosphorylates N-acetylgalactosamine at the expense of ATP. Recombinant GALK2 expressed in, and purified from, Escherichia coli was shown to be active with the following kinetic parameters: Michaelis constant for ATP, 14 +/- 3 mu M; Michaelis constant for N-acetylgalactosamine, 40 +/- 14 mu M; and turnover number, 1.0 +/- 0.1 s

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pericytes are known to communicate with endothelial cells by direct contact and by releasing cytokines such as TGF-beta. There is also strong evidence that pericytes act as regulators of endothelial cell proliferation and differentiation. We have investigated the effect of pericyte-conditioned medium (PCM) on proliferation of human microvascular endothelial cells in vitro, together with the expression of the vasoregulatory molecules, constitutive and inducible nitric oxide synthases (ecNOS and iNOS), and endothelin-1 (ET-1). Expression was measured at the mRNA level using semiquantitative RT-PCR for all three genes and at the protein level for ecNOS and iNOS using Western blotting. Growth curves for HMECs showed that PCM inhibits proliferation, eventually leading to cell death. Exposure to PCM repressed iNOS mRNA expression fivefold after 6 h. A similar, though delayed, reduction in protein levels was observed. ecNOS mRNA was slightly induced at 6 h, though there was no significant change in ecNOS protein. By contrast, ET-1 mRNA was induced 2.3-fold after 6 h exposure to PCM. We conclude that pericytes release a soluble factor or factors that are potent inhibitors of endothelial cell growth and promote vasoconstriction by up-regulating endothelin-1 and down-regulating iNOS. (C) 2000 Academic Press.