84 resultados para Finite difference modelling


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental and finite element modelling methods are used to study the formation of vapour layers in electrical discharges through saline solutions. The experiments utilize shadowgraphic and photometric methods to observe the time dependence of thin vapour layers and plasma formation around electrodes driven by moderate voltage (<500 V) pulses, applied to an electrode immersed in a conducting saline solution. Finite element multiphysics software, coupling thermal and electrical effects, is employed to model the vapour layer formation. All relevant electrical and thermal properties of the saline are incorporated into the model, but hydrodynamic and surface tension effects are ignored. Experimental shadowgraph and modelling images are compared, as are current histories, and the agreement is very good. The comparison of experiment and modelling gives insight into both vapour layer production and subsequent plasma production. We show that, for example, superheating of the saline above its normal vaporization temperature may be playing a significant role in vapour formation. We also show that electric fields of approaching 10(7) V m(-1) can be achieved in the vapour layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The feasibility of apertureless scanning near-field Raman microscopy, exploiting the local enhancement in Raman scattering in the vicinity of a silver or gold tip, was investigated. Using the finite difference time domain method we calculated the enhancement of electric field strength, and hence Raman scattering, achieved through the resonant excitation of local modes in the tip. By modelling the frequency-dependent dielectric response of the metal tip we were able to highlight the resonant nature of the tip-enhancement and determine the excitation wavelength required for the strongest electric field enhancement, and hence Raman scattering intensity, which occurs for the excitation of modes localized at the tip apex. It is demonstrated that a peak Raman enhancement of 10(7)-fold should be achievable with <5 nm spatial resolution. We show that surface-enhanced Raman scattering from carbon contamination on a silver or gold tip can be significant. However, we find for a tip of radius of curvature 20 nm that the Raman enhancement should decay totally within 20 nm from the tip. Hence withdrawal of the tip by this distance should lead to the disappearance of the tip-enhanced signal, leaving only that from carbon contamination on the tip itself and the intrinsic signal from the sample. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the pursuit of producing high quality, low-cost composite aircraft structures, out-of-autoclave manufacturing processes for textile reinforcements are being simulated with increasing accuracy. This paper focuses on the continuum-based, finite element modelling of textile composites as they deform during the draping process. A non-orthogonal constitutive model tracks yarn orientations within a material subroutine developed for Abaqus/Explicit, resulting in the realistic determination of fabric shearing and material draw-in. Supplementary material characterisation was experimentally performed in order to define the tensile and non-linear shear behaviour accurately. The validity of the finite element model has been studied through comparison with similar research in the field and the experimental lay-up of carbon fibre textile reinforcement over a tool with double curvature geometry, showing good agreement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton׳s equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton׳s method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Externally bonding of FRP composites is an effective technique for retrofitting historical masonry arch structures. A major failure mode in such strengthened structures is the debonding of FRP from the masonry. The bond behaviour between FRP and masonry thus plays a crucial role in these structures. Major challenges exist in the finite element modelling of such structures, such as modelling of mixed Mode-I and Mode-II bond behaviour between the FRP and the curved masonry substrate, modelling of existing damages in the masonry arches, consideration of loading history in the unstrengthened and strengthened structure etc. This paper presents a rigorous FE model for simulating FRP strengthened masonry arch structures. A detailed solid model was developed for simulating the masonry and a mixed-mode interface model was used for simulating the FRP-to-masonry bond behaviour. The model produces results in very close agreement with test results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper discusses compact-stencil finite difference time domain (FDTD) schemes for approximating the 2D wave equation in the context of digital audio. Stability, accuracy, and efficiency are investigated and new ways of viewing and interpreting the results are discussed. It is shown that if a tight accuracy constraint is applied, implicit schemes outperform explicit schemes. The paper also discusses the relevance to digital waveguide mesh modelling, and highlights the optimally efficient explicit scheme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The predictive capability of high fidelity finite element modelling, to accurately capture damage and crush behaviour of composite structures, relies on the acquisition of accurate material properties, some of which have necessitated the development of novel approaches. This paper details the measurement of interlaminar and intralaminar fracture toughness, the non-linear shear behaviour of carbon fibre (AS4)/thermoplastic Polyetherketoneketone (PEKK) composite laminates and the utilisation of these properties for the accurate computational modelling of crush. Double-cantilever-beam (DCB), four-point end-notched flexure (4ENF) and Mixed-mode bending (MMB) test configurations were used to determine the initiation and propagation fracture toughness in mode I, mode II and mixed-mode loading, respectively. Compact Tension (CT) and Compact Compression (CC) test samples were employed to determine the intralaminar longitudinal tensile and compressive fracture toughness. V-notched rail shear tests were used to measure the highly non-linear shear behaviour, associated with thermoplastic composites, and fracture toughness. Corresponding numerical models of these tests were developed for verification and yielded good correlation with the experimental response. This also confirmed the accuracy of the measured values which were then employed as input material parameters for modelling the crush behaviour of a corrugated test specimen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate and efficient grid based techniques for the solution of the time-dependent Schrodinger equation for few-electron diatomic molecules irradiated by intense, ultrashort laser pulses are described. These are based on hybrid finite-difference, Lagrange mesh techniques. The methods are applied in three scenarios, namely H-2(+) with fixed internuclear separation, H-2(+) with vibrating nuclei and H-2 with fixed internuclear separation and illustrative results presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We implement a parallel, time-dependent hybrid finite-difference Lagrange mesh code to model the electron dynamics of the fixed-nuclei hydrogen molecular ion subjected to intense ultrashort laser Pulses, Ionization rates are calculated and compared with results from a previous finite-difference approach and also with published Floquet results. The sensitivity of the results to the gauge describing the electron-field interaction is studied. Visualizations of the evolving wave packets are also presented in which the formation of a stable bound-state resonance is observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Explicit finite difference (FD) schemes can realise highly realistic physical models of musical instruments but are computationally complex. A design methodology is presented for the creation of FPGA-based micro-architectures for FD schemes which can be applied to a range of applications with varying computational requirements, excitation and output patterns and boundary conditions. It has been applied to membrane and plate-based sound producing models, resulting in faster than real-time performance on a Xilinx XC2VP50 device which is 10 to 35 times faster than general purpose and DSP processors. The models have developed in such a way to allow a wide range of interaction (by a musician) thereby leading to the possibility of creating a highly realistic digital musical instrument.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue-implanted ultra-high frequency (UHF) radio devices are being employed in both humans and animals for telemetry and telecommand applications, This paper describes the experimental measurement and electromagnetic modeling of propagation from 418-MHz and 916.5-MHz sources placed in the human vagina. Whole-body homogeneous and semi-segmented software models were constructed using data from the Visible Human Project. Bodyworn radiation efficiencies for a vaginally placed 418-MHz source were calculated using finite-difference time-domain and ranged between 1.6% and 3.4% (corresponding to net body losses of between 14.7 and 18.0 dB), Greater losses were encountered at 916.5 MHz, with efficiencies between 0.36% and 0.46% (net body loss ranging between 23.4 and 24.4 dB), Practical measurements were in good agreement with simulations, to within 2 dB at 418 MHz and 3 dB at 916.5 MHz. The degree of tissue-segmentation for whole-body models was found to have a minimal effect on calculated azimuthal radiation patterns and bodyworn radiation efficiency, provided the region surrounding the implanted source was sufficiently detailed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A periodic finite-difference time-domain (FDTD) analysis is presented and applied for the first time in the study of a two-dimensional (2-D) leaky-wave planar antenna based on dipole frequency selective surfaces (FSSs). First, the effect of certain aspects of the FDTD modeling in the modal analysis of complex waves is studied in detail. Then, the FDTD model is used for the dispersion analysis of the antenna of interest. The calculated values of the leaky-wave attenuation constants suggest that, for an antenna of this type and moderate length, a significant amount of power reaches the edges of the antenna, and thus diffraction can play an important role. To test the validity of our dispersion analysis, measured radiation patterns of a fabricated prototype are presented and compared with those predicted by a leaky-wave approach based on the periodic FDTD results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A dynamic mathematical model for simulating the coupled heat and moisture migration through multilayer porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The discretization of the governing equations was done by the finite difference approach. A new experimental set-up was also developed in this study. The evolution of transient temperature and moisture distributions inside specimens were measured. The method for determining the temperature gradient coefficient was also presented. The moisture diffusion coefficient, temperature gradient coefficient, sorption–desorption isotherms were experimentally evaluated for some building materials (sandstone and lime-cement mortar). The model was validated by comparing with the experimental data with good agreement. Another advantage of the method lies in the fact that the required transport properties for predicting the non-isothermal moisture flow only contain the vapor diffusion coefficient and temperature gradient coefficient. They are relatively simple, and can be easily determined.