67 resultados para Error analysis (Mathematics)
Resumo:
Multiuser diversity gain has been investigated well in terms of a system capacity formulation in the literature. In practice, however, designs on multiuser systems with nonzero error rates require a relationship between the error rates and the number of users within a cell. Considering a best-user scheduling, where the user with the best channel condition is scheduled to transmit per scheduling interval, our focus is on the uplink. We assume that each user communicates with the base station through a single-input multiple-output channel. We derive a closed-form expression for the average BER, and analyze how the average BER goes to zero asymptotically as the number of users increases for a given SNR. Note that the analysis of average BER even in SI SO multiuser diversity systems has not been done with respect to the number of users for a given SNR. Our analysis can be applied to multiuser diversity systems with any number of antennas.
Resumo:
In this article the multibody simulation software package MADYMO for analysing and optimizing occupant safety design was used to model crash tests for Normal Containment barriers in accordance with EN 1317. The verification process was carried out by simulating a TB31 and a TB32 crash test performed on vertical portable concrete barriers and by comparing the numerical results to those obtained experimentally. The same modelling approach was applied to both tests to evaluate the predictive capacity of the modelling at two different impact speeds. A sensitivity analysis of the vehicle stiffness was also carried out. The capacity to predict all of the principal EN1317 criteria was assessed for the first time: the acceleration severity index, the theoretical head impact velocity, the barrier working width and the vehicle exit box. Results showed a maximum error of 6% for the acceleration severity index and 21% for theoretical head impact velocity for the numerical simulation in comparison to the recorded data. The exit box position was predicted with a maximum error of 4°. For the working width, a large percentage difference was observed for test TB31 due to the small absolute value of the barrier deflection but the results were well within the limit value from the standard for both tests. The sensitivity analysis showed the robustness of the modelling with respect to contact stiffness increase of ±20% and ±40%. This is the first multibody model of portable concrete barriers that can reproduce not only the acceleration severity index but all the test criteria of EN 1317 and is therefore a valuable tool for new product development and for injury biomechanics research.
Resumo:
In order to formalize and extend on previous ad-hoc analysis and synthesis methods a theoretical treatment using vector representations of directional modulation (DM) systems is introduced and used to achieve DM transmitter characteristics. An orthogonal vector approach is proposed which allows the artificial orthogonal noise concept derived from information theory to be brought to bear on DM analysis and synthesis. The orthogonal vector method is validated and discussed via bit error rate (BER) simulations.
Resumo:
This work investigates the end-to-end performance of randomized distributed space-time codes with complex Gaussian distribution, when employed in a wireless relay network. The relaying nodes are assumed to adopt a decode-and-forward strategy and transmissions are affected by small and large scale fading phenomena. Extremely tight, analytical approximations of the end-to-end symbol error probability and of the end-to-end outage probability are derived and successfully validated through Monte-Carlo simulation. For the high signal-to-noise ratio regime, a simple, closed-form expression for the symbol error probability is further provided.
Resumo:
Many concerns have been expressed that students’ basic mathematical skills have deteriorated during the 1990s and there has been disquiet that current A-level grading does not distinguish adequately between the more able students. This study reports the author’s experiences of teaching maths to large classes of first-year engineering students and aims to enhance understanding of levels of mathematical competence in more recent years. Over the last four years, the classes have consisted of a very large proportion of highly qualified students – about 91% of them had at least grade B in A-level Mathematics. With a small group of students having followed a non-traditional route to university (no A-level maths) and another group having benefitted through taking A-level Further Mathematics at school, the classes have contained a very wide range of mathematical backgrounds. Despite the introductory maths course at university involving mainly repetition of A-level material, students’ marks were spread over a very wide range – for example, A-level Mathematics grade B students have scored across the range 16 – 97%. Analytical integration is the topic which produced the largest variation in performance across the class but, in contrast, the A-level students generally performed well in differentiation. Initial analysis suggests some stability in recent years in the mathematical proficiency of students with a particular A-level Mathematics grade. Allowing choice of applied maths modules as part of the A-level maths qualification increases the variety of students’ mathematical backgrounds and their selection from mechanics, statistics or decision maths is not clear from the final qualification.
Resumo:
We are conducting an ESO Large Program that includes optical photometry, thermal-IR observations, and optical-NIR spectroscopy of selected NEAs. Among the principal goals of the program are shape and spin-state modeling, and searching for YORP-induced changes in rotation periods. One of our targets is asteroid (1917) Cuyo, a near-Earth asteroid from the Amor group. We carried out an extensive observing campaign on Cuyo between April 2010 and April 2013, operating primarily at the ESO 3.6m NTT for optical photometry, and the 8.2m VLT at Paranal for thermal-IR imaging. Further optical observations were acquired at the ESO 2.2m telescope, the Palomar 200" Hale telescope (California), JPL’s Table Mountain Observatory (California) and the Faulkes Telescope South (Australia). We obtained optical imaging data for rotational lightcurves throughout this period, as the asteroid passed through a wide range of observational geometries, conducive to producing a good shape model and spin state solution. The preliminary shape and spin state model indicates a nearly spherical shape and a rotation pole at ecliptic longitude λ = 53° ± 20° and latitude β = -37° ± 10° (1-sigma error bars are approximate). The sidereal rotation period was measured to be 2.6899522 ± (3 × 10^-7) hours. Linkage with earlier lightcurve data shows possible evidence of a small change in rotation rate during the period 1989-2013. We applied the NEATM thermal model (Harris A., Icarus 131, 291, 1998) to our VLT thermal-IR measurements (8-19.6 μm), obtained in September and December 2011. The derived effective diameter ranges from 3.4 to 4.2 km, and the geometric albedo is 0.16 (+0.07, -0.04). Using the shape model and thermal fluxes we will perform a detailed thermophysical analysis using the new Advanced Thermophysical Model (Rozitis, B. & Green, S.F., MNRAS 415, 2042, 2011; Rozitis, B. & Green, S.F., MNRAS 423, 367, 2012). This work was performed in part at the Jet Propulsion Laboratory under a contract with NASA.
Resumo:
In this paper, weconsider switch-and-stay combining (SSC) in two-way relay systems with two amplify-and-forward relays, one of which is activated to assist the information exchange between the two sources. The system operates in either analog network coding (ANC) protocol where the communication is only achieved with the help of the active relay or timedivision broadcast (TDBC) protocol where the direct link between two sources can be utilized to exploit more diversity gain. In both cases, we study the outage probability and bit error rate (BER) for Rayleigh fading channels. In particular, we derive closed-form lower bounds for the outage probability and the average BER, which remain tight for different fading conditions. We also present asymptotic analysis for both the outage probability and the average BER at high signalto-noise ratio. It is shown that SSC can achieve the full diversity order in two-way relay systems for both ANC and TDBC protocols with proper switching thresholds. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
In this paper, a low complexity system for spectral analysis of heart rate variability (HRV) is presented. The main idea of the proposed approach is the implementation of the Fast-Lomb periodogram that is a ubiquitous tool in spectral analysis, using a wavelet based Fast Fourier transform. Interestingly we show that the proposed approach enables the classification of processed data into more and less significant based on their contribution to output quality. Based on such a classification a percentage of less-significant data is being pruned leading to a significant reduction of algorithmic complexity with minimal quality degradation. Indeed, our results indicate that the proposed system can achieve up-to 45% reduction in number of computations with only 4.9% average error in the output quality compared to a conventional FFT based HRV system.
Resumo:
In this paper, the overall formation stability of unmanned multi-vehicle is mathematically presented under interconnection topologies. A novel definition of formation error is first given and followed by the proposed formation stability hypothesis. Based on this hypothesis, a unique extension-decomposition-aggregation scheme is then employed to support the stability analysis for the overall multi-vehicle formation under a mesh topology. It is proved that the overall formation control system consisting of N number of nonlinear vehicles is not only asymptotically, but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. This technique is shown to be applicable for a mesh topology but is equally applicable for other topologies. Simulation study of the formation manoeuvre of multiple Aerosonde UAVs, in 3D-space, is finally carried out verifying the achieved formation stability result.
Resumo:
The use of handheld near infrared (NIR) instrumentation, as a tool for rapid analysis, has the potential to be used widely in the animal feed sector. A comparison was made between handheld NIR and benchtop instruments in terms of proximate analysis of poultry feed using off-the-shelf calibration models and including statistical analysis. Additionally, melamine adulterated soya bean products were used to develop qualitative and quantitative calibration models from the NIRS spectral data with excellent calibration models and prediction statistics obtained. With regards to the quantitative approach, the coefficients of determination (R2) were found to be 0.94-0.99 with the corresponding values for the root mean square error of calibration and prediction were found to be 0.081-0.215 % and 0.095-0.288 % respectively. In addition, cross validation was used to further validate the models with the root mean square error of cross validation found to be 0.101-0.212 %. Furthermore, by adopting a qualitative approach with the spectral data and applying Principal Component Analysis, it was possible to discriminate between adulterated and pure samples.
Resumo:
Linguistic influences in mathematics have previously been explored throughsubtyping methodology and by taking advantage of the componential nature ofmathematics and variations in language requirements that exist across tasks. Thepresent longitudinal investigation aimed to examine the language requirements of mathematical tasks in young children aged 5-7 years. Initially, 256 children were screened for mathematics and reading difficulties using standardised measures. Those scoring at or below the 35th percentile on either dimension were classified as having difficulty. From this screening, 115 children were allocated to each of the MD (n=26), MDRD (n=32), reading difficulty (RD, n=22) and typically achieving (TA, n=35) subtypes. These children were tested at four time points, separated by six monthly intervals, on a battery of seven mathematical tasks. Growth curve analysis indicated that, in contrast to previous research on older children, young children with MD and MDRD had very similar patterns of development on all mathematical tasks. Overall, the subtype comparisons suggested that language played only a minor mediating role in most tasks, and this was secondary in importance to non-verbal skills. Correlational evidence suggested that children from the different subtypescould have been using different mixes of verbal and non-verbal strategies to solve the mathematical problems.
Resumo:
Objective: Molecular pathology relies on identifying anomalies using PCR or analysis of DNA/RNA. This is important in solid tumours where molecular stratification of patients define targeted treatment. These molecular biomarkers rely on examination of tumour, annotation for possible macro dissection/tumour cell enrichment and the estimation of % tumour. Manually marking up tumour is error prone. Method: We have developed a method for automated tumour mark-up and % cell calculations using image analysis called TissueMark® based on texture analysis for lung, colorectal and breast (cases=245, 100, 100 respectively). Pathologists marked slides for tumour and reviewed the automated analysis. A subset of slides was manually counted for tumour cells to provide a benchmark for automated image analysis. Results: There was a strong concordance between pathological and automated mark-up (100 % acceptance rate for macro-dissection). We also showed a strong concordance between manually/automatic drawn boundaries (median exclusion/inclusion error of 91.70 %/89 %). EGFR mutation analysis was precisely the same for manual and automated annotation-based macrodissection. The annotation accuracy rates in breast and colorectal cancer were 83 and 80 % respectively. Finally, region-based estimations of tumour percentage using image analysis showed significant correlation with actual cell counts. Conclusion: Image analysis can be used for macro-dissection to (i) annotate tissue for tumour and (ii) estimate the % tumour cells and represents an approach to standardising/improving molecular diagnostics.
Resumo:
Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.
Resumo:
Background: Qualified teaching staffs are neither available nor affordable to provide large numbers of children with individual attention. One solution to providing individual tuition has been the development of tutoring programs that are delivered by nonprofessional tutors, such as classmates, older children and community volunteers. Objectives: We have conducted a systematic review of cross-age tutoring interventions delivered by non-professional tutors to children between 5 and 11 years old. Only randomized controlled trials with reliable measures of academic outcomes, and continuing for at least 12 weeks, compared to instruction as usual, were included. Results: Searches of electronic databases and previous reviews, and contacts with researchers yielded 11,564 titles; after screening, 15 studies were included in the analysis. Cross-age tutoring showed small significant effects for tutees on the composite measure of reading (g=0.18, 95% CI: 0.08, 0.27, N=8251), decoding skills (g=0.29, 95% CI: 0.13, 0.44, N=7081), and reading comprehension (g=0.11, 95% CI: 0.01, 0.21, N=6945). No significant effects were detected for other reading sub-skills or for mathematics. The quality of evidence is decreased by study limitations and high heterogeneity of effects. Conclusions: The benefits for tutees of non-professional peer and cross-age tutoring can be given a positive but weak recommendation, considering the low quality of evidence and lack of cost information. Subgroup analyses suggested that highly-structured reading programs may be more useful than loosely-structured programs. Large-scale replication trials using factorial design, process evaluations, reliable outcome measures and logic models are needed to better understand under what conditions, and for whom, cross-age non-professional tutoring may be effective.