72 resultados para Energy Efficient
Resumo:
Emerging web applications like cloud computing, Big Data and social networks have created the need for powerful centres hosting hundreds of thousands of servers. Currently, the data centres are based on general purpose processors that provide high flexibility buts lack the energy efficiency of customized accelerators. VINEYARD aims to develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by employing typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). This programming framework will, further, allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer high flexibility and energy efficiency. VINEYARD will foster the expansion of the soft-IP core industry, currently limited in the embedded systems, to the data-centre market. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases (a) a bio-informatics application for high-accuracy brain modeling, (b) two critical financial applications, and (c) a big-data analysis application.
Resumo:
There is a significant lack of indoor air quality research in low energy homes. This study compared the indoor air quality of eight
newly built case study homes constructed to similar levels of air-tightness and insulation; with two different ventilation strategies (four homes with Mechanical Ventilation with Heat Recovery (MVHR) systems/Code level 4 and four homes naturally ventilated/Code level 3). Indoor air quality measurements were conducted over a 24 h period in the living room and main bedroom of each home during the summer and winter seasons. Simultaneous outside measurements and an occupant diary were also employed during the measurement period. Occupant interviews were conducted to gain information on perceived indoor air quality, occupant behaviour and building related illnesses. Knowledge of the MVHR system including ventilation related behaviour was also studied. Results suggest indoor air quality problems in both the mechanically ventilated and naturally ventilated homes, with significant issues identified regarding occupant use in the social homes
Resumo:
We propose a new selective multi-carrier index keying in orthogonal frequency division multiplexing (OFDM) systems that opportunistically modulate both a small subset of sub-carriers and their indices. Particularly, we investigate the performance enhancement in two cases of error propagation sensitive and compromised deviceto-device (D2D) communications. For the performance evaluation, we focus on analyzing the error propagation probability (EPP) introducing the exact and upper bound expressions on the detection error probability, in the presence of both imperfect and perfect detection of active multi-carrier indices. The average EPP results in closedform are generalized for various fading distribution using the moment generating function, and our numerical results clearly show that the proposed approach is desirable for reliable and energy-efficient D2D applications.
Resumo:
Exascale computation is the next target of high performance computing. In the push to create exascale computing platforms, simply increasing the number of hardware devices is not an acceptable option given the limitations of power consumption, heat dissipation, and programming models which are designed for current hardware platforms. Instead, new hardware technologies, coupled with improved programming abstractions and more autonomous runtime systems, are required to achieve this goal. This position paper presents the design of a new runtime for a new heterogeneous hardware platform being developed to explore energy efficient, high performance computing. By combining a number of different technologies, this framework will both simplify the programming of current and future HPC applications, as well as automating the scheduling of data and computation across this new hardware platform. In particular, this work explores the use of FPGAs to achieve both the power and performance goals of exascale, as well as utilising the runtime to automatically effect dynamic configuration and reconfiguration of these platforms.
Resumo:
Dye-sensitized solar cell (DSSC) is currently a promising technology that makes solar energy efficient and cost-effective to harness. In DSSC, metal free dyes, such indoline-containing D149 and D205, are proved to be potential alternatives for traditional metal organic dyes. In this work, a DFT/TDDFT characterization for D149 and D205 were carried out using different functionals, including B3LYP, MPW1K, CAM-B3LYP and PBE0. Three different conformers for D149 and four different conformers for D205 were identified and calculated in vacuum. The performance of different functionals on calculating the maximum absorbance of the dyes in vacuum and five common solvents (acetonitrile, chloroform, ethanol, methanol, and THF) were examined and compared to determine the suitable computational setting for predicting properties of these two dyes. Furthermore, deprotonated D149 and D205 in solvents were also considered, and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated, which elucidates the substitution effect on the rhodanine ring of D149 and D205 dyes on their efficiency. Finally, D149 and D205 molecules were confirmed to be firmly anchored on ZnO surface by periodic DFT calculations. These results would shed light on the design of new highly efficiency metal-free dyes.
Resumo:
La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), a promising electrolyte material for intermediate temperature solid oxide fuel cells, can be sintered to a fully dense state by a flash-sintering technique. In this work, LSGM is sintered by the current-limiting flash-sintering process at 690°C under an electric field of 100 V cm-1, in comparison with up to 1400°C or even higher temperature in conventional furnace sintering. The resultant LSGM samples are investigated by scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The SEM images exhibit well-densified microstructures while XRD results show that the perovskite structure after flash-sintering does not changed. EIS results show that the conductivity of LSGM sintered by the current-limiting flash-sintering process increases with sintering current density value. The conductivity of samples sintered at 120 mA mm-2 reaches 0.049 σ cm-1 at 800°C, which is approximate to the value of conventional sintered LSGM samples at 1400°C. Additionally, the flash-sintering process is interpreted by Joule heating theory. Therefore, the current-limiting flash-sintering technique is proved to be an energy-efficient and eligible approach for the densification of LSGM and other materials requiring high sintering temperature.
Resumo:
Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [(31)P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.
Resumo:
In this paper, we present a unique cross-layer design framework that allows systematic exploration of the energy-delay-quality trade-offs at the algorithm, architecture and circuit level of design abstraction for each block of a system. In addition, taking into consideration the interactions between different sub-blocks of a system, it identifies the design solutions that can ensure the least energy at the "right amount of quality" for each sub-block/system under user quality/delay constraints. This is achieved by deriving sensitivity based design criteria, the balancing of which form the quantitative relations that can be used early in the system design process to evaluate the energy efficiency of various design options. The proposed framework when applied to the exploration of energy-quality design space of the main blocks of a digital camera and a wireless receiver, achieves 58% and 33% energy savings under 41% and 20% error increase, respectively. © 2010 ACM.
Resumo:
A novel method for controlling wave energy converters using active bipolar damping is described and compared with current control methods. The performance of active bipolar damping is modelled numerically for two distinct types of wave energy converter and it is found that in both cases the power capture can be significantly increased relative to optimal linear damping. It is shown that this is because active bipolar damping has the potential for providing a quasi-spring or quasi-inertia, which improves the wave energy converter's tuning and amplitude of motion, resulting in the increase in power capture observed. The practical implementation of active bipolar damping is also discussed. It is noted that active bipolar damping does not require a reactive energy store and thereby reduces the cost and eliminates losses due to the cycling of reactive energy. It is also noted that active bipolar damping could be implemented using a single constant pressure double-acting hydraulic cylinder and so potentially represents a simple, efficient, robust and economic solution to the control of wave energy converters.
Resumo:
A time-dependent method for calculating the collective excitation frequencies and densities of a trapped, inhomogeneous Bose-Einstein condensate with circulation is presented. The results are compared with time-independent solutions of the Bogoliubov-de Gennes equations. The method is based on time-dependent linear-response theory combined with spectral analysis of moments of the excitation modes of interest. The technique is straightforward to apply, extremely efficient in our implementation with parallel fast Fourier transform methods, and produces highly accurate results. For high dimensionality or low symmetry the time-dependent approach is a more practical computational scheme and produces accurate and reliable data. The method is suitable for general trap geometries, condensate flows and condensates permeated with defects and vortex structures.
Resumo:
We report on the characterization of the specular reflection of 50 fs laser pulses in the intensity range 10(17)-10(21)Wcm(-2) obliquely incident with p-polarization onto solid density plasmas. These measurements show that the absorbed energy fraction remains approximately constant and that second harmonic generation (SHG) achieves efficiencies of 22 +/- 8% for intensities approaching 10(21)Wcm(-2). A simple model based on the relativistic oscillating mirror concept reproduces the observed intensity scaling, indicating that this is the dominant process involved for these conditions. This method may prove to be superior to SHG by sum frequency mixing in crystals as it is free from dispersion and retains high spatial coherence at high intensity.
Resumo:
Short pulses of 100 ps FWHM duration at 1.06 mu m wavelength are used as the pump source for driving the J = 0-1, 19.6 nm, Ne-like germanium X-ray laser. Different combinations of short pulses are investigated and quantitatively compared. Configurations investigated include a single pulse, double pulses at 400 ps and 800 ps separation, single pulses with prepulses and double pulses with prepulses. Data are presented in the form of integrated energy measurements, and supported by modelling. The most efficient short pulse configurations are shown to be orders of magnitude more effective than pumping with nanosecond duration pulses. (C) 1997 Elsevier Science B.V.
Resumo:
The Kyoto Protocol and the European Energy Performance of Buildings Directive put an onus on governments
and organisations to lower carbon footprint in order to contribute towards reducing global warming. A key
parameter to be considered in buildings towards energy and cost savings is its indoor lighting that has a major
impact on overall energy usage and Carbon Dioxide emissions. Lighting control in buildings using Passive
Infrared sensors is a reliable and well established approach; however, the use of only Passive Infrared does not
offer much savings towards reducing carbon, energy, and cost. Accurate occupancy monitoring information can
greatly affect a building’s lighting control strategy towards a greener usage. This paper presents an approach for
data fusion of Passive Infrared sensors and passive Radio Frequency Identification (RFID) based occupancy
monitoring. The idea is to have efficient, need-based, and reliable control of lighting towards a green indoor
environment, all while considering visual comfort of occupants. The proposed approach provides an estimated
13% electrical energy savings in one open-plan office of a University building in one working day. Practical
implementation of RFID gateways provide real-world occupancy profiling data to be fused with Passive
Infrared sensing towards analysis and improvement of building lighting usage and control.
Resumo:
The standard local density approximation and generalized gradient approximations fail to properly describe the dissociation of an electron pair bond, yielding large errors (on the order of 50 kcal/mol) at long bond distances. To remedy this failure, a self-consistent Kohn-Sham (KS) method is proposed with the exchange-correlation (xc) energy and potential depending on both occupied and virtual KS orbitals. The xc energy functional of Buijse and Baerends [Mol. Phys. 100, 401 (2002); Phys. Rev. Lett. 87, 133004 (2001)] is employed, which, based on an ansatz for the xc-hole amplitude, is able to reproduce the important dynamical and nondynamical effects of Coulomb correlation through the efficient use of virtual orbitals. Self-consistent calculations require the corresponding xc potential to be obtained, to which end the optimized effective potential (OEP) method is used within the common energy denominator approximation for the static orbital Green's function. The problem of the asymptotic divergence of the xc potential of the OEP when a finite number of virtual orbitals is used is addressed. The self-consistent calculations reproduce very well the entire H-2 potential curve, describing correctly the gradual buildup of strong left-right correlation in stretched H-2. (C) 2003 American Institute of Physics.