113 resultados para Electricity grid
Resumo:
Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Recent cold winters and prolonged periods of low wind speeds have prompted concerns about the increasing penetration of wind generation in the Irish and other northern European power systems. On the combined Republic of Ireland and Northern Ireland system there was in excess of 1.5 GW of installed wind power in January 2010. As the penetration of these variable, non-dispatchable generators increases, power systems are becoming more sensitive to weather events on the supply side as well as on the demand side. In the temperate climate of Ireland, sensitivity of supply to weather is mainly due to wind variability while demand sensitivity is driven by space heating or cooling loads. The interplay of these two weather-driven effects is of particular concern if demand spikes driven by low temperatures coincide with periods of low winds. In December 2009 and January 2010 Ireland experienced a prolonged spell of unusually cold conditions. During much of this time, wind generation output was low due to low wind speeds. The impacts of this event are presented as a case study of the effects of weather extremes on power systems with high penetrations of variable renewable generation.
Resumo:
The international introduction of electric vehicles (EVs) will see a change in private passenger car usage, operation and management. There are many stakeholders, but currently it appears that the automotive industry is focused on EV manufacture, governments and policy makers have highlighted the potential environmental and job creation opportunities while the electricity sector is preparing for an additional electrical load on the grid system. If the deployment of EVs is to be successful the introduction of international EV standards, universal charging hardware infrastructure, associated universal peripherals and user-friendly software on public and private property is necessary. The focus of this paper is to establish the state-of-the-art in EV charging infrastructure, which includes a review of existing and proposed international standards, best practice and guidelines under consideration or recommendation.
Resumo:
Globally on-shore wind power has seen considerable growth in all grid systems. In the coming decade off-shore wind power is also expected to expand rapidly. Wind power is variable and intermittent over various time scales because it is weather dependent. Therefore wind power integration into traditional grids needs additional power system and electricity market planning and management for system balancing. This extra system balancing means that there is additional system costs associated with wind power assimilation. Wind power forecasting and prediction methods are used by system operators to plan unit commitment, scheduling and dispatch and by electricity traders and wind farm owners to maximize profit. Accurate wind power forecasting and prediction has numerous challenges. This paper presents a study of the existing and possible future methods used in wind power forecasting and prediction for both on-shore and off-shore wind farms.
Resumo:
Electricity systems models are software tools used to manage electricity demand and the electricity systems, to trade electricity and for generation expansion planning purposes. Various portfolios and scenarios are modelled in order to compare the effects of decision making in policy and on business development plans in electricity systems so as to best advise governments and industry on the least cost economic and environmental approach to electricity supply, while maintaining a secure supply of sufficient quality electricity. The modelling techniques developed to study vertically integrated state monopolies are now applied in liberalised markets where the issues and constraints are more complex. This paper reviews the changing role of electricity systems modelling in a strategic manner, focussing on the modelling response to key developments, the move away from monopoly towards liberalised market regimes and the increasing complexity brought about by policy targets for renewable energy and emissions. The paper provides an overview of electricity systems modelling techniques, discusses a number of key proprietary electricity systems models used in the USA and Europe and provides an information resource to the electricity analyst not currently readily available in the literature on the choice of model to investigate different aspects of the electricity system.
Resumo:
In late 2008, the Government of the Republic of Ireland set a specific target that 10% of all vehicles in its transport fleet be powered by electricity by 2020 in order to meet European Union renewable energy targets and greenhouse gas emissions reduction targets. International there are similar targets. This is a considerable challenge as in 2009, transport accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the impacts of 10% electric vehicle charging on the single wholesale electricity market for the Republic of Ireland and Northern Ireland is examined. The energy consumed and the total carbon dioxide emissions generated under different charging scenarios is quantified and the results of the charging scenarios are compared to identify the best implementation strategy.
Resumo:
To meet European Union renewable energy and greenhouse gas emissions reduction targets the Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. However, reducing energy consumption and decreasing greenhouse gas emissions in transport is a considerable challenge due to heavy reliance on fossil fuels. In fact, transport in the Republic of Ireland in 2009 accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the effect of electric vehicle charging on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is analysed. The energy consumed, greenhouse gas emissions generated and changes to the wholesale price of electricity under peak and off-peak charging scenarios are quantified and discussed. Results from the study show that off-peak charging is more beneficial than peak charging.
Resumo:
We study the residential demand for electricity and gas, working with nationwide household-level data that cover recent years, namely 1997-2007. Our dataset is a mixed panel/multi-year cross-sections of dwellings/households in the 50 largest metropolitan areas in the United States as of 2008. We estimate static and dynamic models of electricity and gas demand. We find strong household response to energy prices, both in the short and long term. From the static models, we get estimates of the own price elasticity of electricity demand in the -0.860 to -0.667 range, while the own price elasticity of gas demand is -0.693 to -0.566. These results are robust to a variety of checks. Contrary to earlier literature (Metcalf and Hassett, 1999; Reiss and White, 2005), we find no evidence of significantly different elasticities across households with electric and gas heat. The price elasticity of electricity demand declines with income, but the magnitude of this effect is small. These results are in sharp contrast to much of the literature on residential energy consumption in the United States, and with the figures used in current government agency practice. Our results suggest that there might be greater potential for policies which affect energy price than may have been previously appreciated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present an empirical analysis of the residential demand for electricity using annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has examined residential energy consumption at the state level using annual or monthly data, focusing on the variation in price elasticities of demand across states or regions, but has failed to recognize or address two major issues. The first is that, when fitting dynamic panel models, the lagged consumption term in the right-hand side of the demand equation is endogenous. This has resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The second is that energy price is likely mismeasured.