82 resultados para Cyst Nematode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A questionnaire to obtain information on nematode control practices and sheep management was sent to over 1000 farmers in Northern Ireland. Replies were received from 305 flock owners, and data from 252 of them were analysed. Farms were divided into lowland and upland areas. Sizes of pasture and stocking rates on lowland and upland farms were 59.5 hectares, 6.99 sheep/hectare and 62.9 hectares and 10.01 sheep/hectare, respectively. Mean drenching rates for lambs and adults were 2.33 and 2.44, respectively, in lowland flocks and 2.73 and 2.71, respectively, in upland flocks. Between 2008 and 2011, the most frequently identified compounds in use were benzimidazoles and moxidectin in lowland flocks, and benzimidazoles and avermectins in upland flocks. Over the same period the most frequently identified commercial formulations were Tramazole (R), Panacur (R) and Allverm (R) (white drench), Levacide (R) (yellow drench), Oramec (R) (clear drench; avermectin), Cydectin (R) (clear drench; moxidectin) and Monepantel (R) (orange drench).

Most respondents (56.35%) treated their lambs at weaning and the most common time to treat ewes was identified to be pre-mating (67.86% of respondents).

The results of the questionnaire survey revealed that lowland annual drench frequency was 233 and 2.44 in lambs and ewes, respectively, although drench frequencies were higher in upland flocks: 2.73 and 2.71 for lambs and ewes, respectively.

Annual drench rotation was practiced by 43.96% of flock owners, but whether this was true rotation or pseudo-rotation (i.e., substitution of one anthelmintic product by another product belonging to the same chemical group of anthelmintics) could not be explicitly determined. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clade V nematodes comprise several parasitic species that include the cyathostomins, primary helminth pathogens of horses. Next generation transcriptome datasets are available for eight parasitic clade V nematodes, although no equine parasites are included in this group. Here, we report next generation transcriptome sequencing analysis for the common cyathostomin species, Cylicostephanus goldi. A cDNA library was generated from RNA extracted from 17 C. goldi male and female adult parasites. Following sequencing using a 454 GS FLX pyrosequencer, a total of 475,215 sequencing reads were generated, which were assembled into 26,910 contigs. Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, 27% of the transcriptome was annotated. Further in-depth analysis was carried out by comparing the C. goldi dataset with the next generation transcriptomes and genomes of other clade V nematodes, with the Oesophagostomum dentatum transcriptome and the Haemonchus contortus genome showing the highest levels of sequence identity with the cyathostomin dataset (45%). The C. goldi transcriptome was mined for genes associated with anthelmintic mode of action and/or resistance. Sequences encoding proteins previously associated with the three major anthelmintic classes used in horses were identified, with the exception of the P-glycoprotein group. Targeted resequencing of the glutamate gated chloride channel α4 subunit (glc-3), one of the primary targets of the macrocyclic lactone anthelmintics, was performed for several cyathostomin species. We believe this study reports the first transcriptome dataset for an equine helminth parasite, providing the opportunity for in-depth analysis of these important parasites at the molecular level. Sequences encoding enzymes involved in key processes and genes associated with levamisole/pyrantel and macrocyclic lactone resistance, in particular the glutamate gated chloride channels, were identified. This novel data will inform cyathostomin biology and anthelmintic resistance studies in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sustainable control of animal parasitic nematodes requires the development of efficient functional genomics platforms to facilitate target validation and enhance anthelmintic discovery. Unfortunately, the utility of RNA interference (RNAi) for the validation of novel drug targets in nematode parasites remains problematic. Ascaris suum is an important veterinary parasite and a zoonotic pathogen. Here we show that adult A. suum is RNAi competent, and highlight the induction, spread and consistency of RNAi across multiple tissue types. This platform provides a new opportunity to undertake whole organism-, tissue- and cell-level gene function studies to enhance target validation processes for nematode parasites of veterinary/medical significance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study represents the first ß-tubulin sequence from a trematode parasite, namely, the liver fluke, Fasciola hepatica. PCR of genomic DNA showed that at least one ß-tubulin gene from F. hepatica contains no introns. A number of amino acids in the primary sequence of fluke tubulin are different from those described previously in various nematode species and the cestode, Echinococcus multilocularis. ß-Tubulin is an important target for benzimidazole anthelmintics, although (with the exception of triclabendazole) they show limited activity against F. hepatica. The amino acid differences in fluke ß-tubulin are discussed in relation to the selective toxicity of benzimidazoles against helminths and the mechanism of drug resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central role of FMRFamide-like peptides (FLPs) in nematode motor and sensory capabilities makes FLP signalling an appealing target for new parasiticides. Accumulating evidence has revealed an astounding level of FLP sequence conservation and diversity in the phylum Nematoda, and preliminary work has begun to identify the nematode FLP receptor complement in Caenorhabditis elegans, with a view to investigating their basic biology and therapeutic potential. However, much work is needed to clarify the functional aspects of FLP signalling and how these peptides exert their effects at the organismal level. Here, we summarize our current knowledge of nematode FLP signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on the immunoglobulin (Ig)E immune responses to the gastric nematode, Teladorsagia circumcincta, have demonstrated a major high molecular weight allergen (HMWTc). Cross reactive allergens of similar MW were demonstrated for Trichostrongylus colubriformis and Cooperia curticei, but not for Haemonchus contortus. Purification of HMWTc was achieved by gel-filtration chromatography, and nonreducing SDS-PAGE and Western blot analysis revealed two closely associated bands with a molecular weight of approximately 140-150?kDa. Reduction showed four IgE reactive bands of 120, 50, 45 and 30?kDa, and deglycosylation abrogated the immunoreactivity of the 120 and 30?kDa bands. Ultrastructural immunolocalization by electron microscopy revealed that the IgE reactivity was confined to the cuticular surface of the infective (L3) larvae. ELISA studies to determine the IgE anti-HMWTc responses in lambs during their first grazing season, demonstrated significantly higher IgE antibody in lambs with low accumulative faecal egg count (FEC) compared to animals with high accumulative FEC. These studies provide evidence for a protective function of IgE antibody in Teladorsagia infections in lambs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flatworm, nematode and arthropod parasites have proven their ability to develop resistance to currently available chemotherapeutics. The heavy reliance on chemotherapy and the ability of target species to develop resistance has prompted the search for novel drug targets. In view of its importance to parasite/pest survival, the neuromusculature of parasitic helminths and pest arthropod species remains an attractive target for the discovery Of novel endectocide targets. Exploitation of the neuropeptidergic system in helminths and arthropods has been hampered by a limited Understanding of the functional roles of individual peptides and the structure of endogenous targets, such as receptors. Basic research into these systems has the potential to facilitate target characterization and its offshoots (screen development and drug identification). Of particular interest to parasitologists is the fact that selected neuropeptide families are common to metazoan pest species (nematodes, platyhelminths and arthropods) and fulfil specific roles in the modulation of muscle function in each of the three phyla. This article reviews the inter-phyla activity of two peptide families, the FMRFamide-like peptides and allatostatins, on motor function in helminths and arthropods and discusses the potential of neuropeptide signalling as a target system that could uncover novel endectocidal agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of genes expressed in preparasitic second-stage juveniles (J2) of plant-parasitic nematodes appear to be vulnerable to RNA interference (RNAi) in vitro by coupling double-stranded (ds)RNA soaking with the artificial stimulation of pharyngeal pumping. Also, there is mounting evidence that the in planta generation of nematode-specific double-stranded RNAs (dsRNAs) has real utility in the control of these pests. Although neuronally-expressed genes in Caenorhabditis elegans are commonly refractory to RNAi, we have discovered that neuronally-expressed genes in plant-parasitic nematodes are highly susceptible to RNAi and that silencing can be induced by simple soaking procedures without the need for pharyngeal stimulation. Since most front-line anthelmintics that are used for the control of nematode parasites of animals and humans act to disrupt neuromuscular coordination, we argue that intercellular signalling processes associated with neurons have much appeal as targets for transgenic plant-based control strategies for plant-parasitic nematodes. FMRFamide-like peptides (FLPs) are a large family of neuropeptides which are intimately associated with neuromuscular regulation, and our studies on flp gene function in plant-parasitic nematodes have revealed that their expression is central to coordinated locomotory activities. We propose that the high level of conservation in nervous systems across nematodes coupled with the RNAi-susceptibility of neuronally-expressed genes in plant-parasitic nematodes provides a valuable research tool which could be used to interrogate neuronal signalling processes in nematodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports the identification of nematode neuropeptide-like protein (nlp) sequelogs from the GenBank expressed sequence tag (EST) database, using BLAST (Basic Local Alignment Search Tool) search methodology. Search strings derived from peptides encoded by the 45 known Caenorhabatitis elegans nlp genes were used to identify more than 1000 ESTs encoding a total of 26 multi-species nlp sequelogs. The remaining 18 nlps (nlp-4, -16, -24 through -36, -39, -41 and -45) were identified only in C elegans, while the sole EST representative of nlp-23 was from Caenorhabditis remanei. Several ESTs encoding putative antibacterial peptides similar to those encoded by the C elegans genes nlp-24-33 were observed in several parasite species. A novel gene (nlp-46) was identified, encoding a single, amidated dodecapeptide (NIA[I/T]GR[G/A]DG[F/L]RPG) in eight species. Secretory signal peptides were identified in at least one species representing each nlp sequelog, confirming that all 46 nematode nlp genes encode secretory peptides. A random sub-set of C elegans NLPs was tested physiologically in Ascaris suum ovijector and body wall muscle bioassays. None of the peptides tested were able to modulate ovijector activity, while only three displayed measurable myoactivity on somatic body wall muscle. AFAAGWNRamide (from nlp-23) and AVNPFLDSIamide (nlp-3) both produced a relaxation of body wall muscle, while AIPFNGGMYamide (nlp-10) induced a transient contraction. Numerical analyses of nip-encoding ESTs demonstrate that nlp-3, -13, -14, -15 and -18 are amongst the most highly represented transcripts in the dataset. Using available bioinformatics resources, this study delineates the nlp complement of phylum Nematoda, providing a rich source of neuropeptide ligands for deorphanisation of nematode neuropeptide receptors. (C) 2008 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report the identification of a new family of helminth neuropeptides with members in both nematodes and flatworms, and include preliminary cell biological and functional characterisation of one of the peptides from the trematode parasite of humans, Schistosoma mansoni. Bioinformatics and Rapid Amplification of cDNA Ends (RACE)-PCR were used to identify the completes. mansoni neuropeptide precursor gene Sm-npp-1, which encodes three pentapeptides bearing the motif (A/G)FVR(I/L).NH2. Similar peptides were identified in three other flatworm species and in 15 nematode species. Quantitative PCR (qPCR) and immunocytochemical (ICC) analyses showed that Sm-npp-1 is constitutively expressed in larval and adult worms. ICC and confocal microscopy were employed to localise one of the schistosome NPP-1 peptides (GFVRIamide) in adult worms and schistosomules; antibodies labelled a pair of neurones in the cerebral ganglia that extend posteriorly along the main nerve cords. GFVRIamide displayed no detectable co-localisation with FMRFamide-like peptides (FLPs), nor was it detectable in muscle innervation. Exogenously applied peptide had a significant inhibitory effect on the mobility of whole adult worm pairs at 10(-5) M (n = 9). Finally, we explored Sm-npp-1 function in schistosomules using RNA interference (RNAi); we successfully achieved specific knockdown of the Sm-npp-1 transcript (54.46 +/- 10.41% knockdown, n = 3), but did not detect any clear, aberrant mobility or morphological phenotypes. NPP-1-like peptides are a new family of helminth peptides with a cell-specific expression pattern distinct from FLPs and a modulatory effect on schistosome muscular activity. (C) 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. This paper examines the interaction between the wood mouse, Apodemus sylvaticus L., and the intestinal nematode, Heligmosomoides polygyrus Dujardin, using data collected at Tollymore Park Forest, Co. Down, Northern Ireland, between November 1978 and July 1981.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nematodes include both free-living species such as Caenorhabditis elegans and major parasites of humans, livestock and plants. The apparent simplicity and uniformity of their nervous system belies a rich diversity of putative signalling molecules,particularly neuropeptides. This new appreciation stems largely from the genome-sequencing project with C. elegans, which is due to be completed by the end of 1998. The project has provided additional insights into other aspects of nematode neurobiology, as have studies on the mechanism of action of anthelmintics. Here, progress on the identification, localization, synthesis and physiological actions of transmitters identified in nematodes is explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The FMRFamide-related peptides (FaRPs), KHEYLRFamide (AF2) and KSAYMRFamide (PF3) were structurally characterised from the parasitic nematode of sheep, Haemonchus contortus (MH isolate). Both peptides were sequenced in a single gas-phase sequencing run and their structure confirmed by mass spectrometry which identified peptides of 920 Da (C-terminally amidated AF2) and 902/918 Da (C-terminally amidated non-oxidised/oxidised PF3, respectively). AF2 had inhibitory effects on H. contortus muscle and inhibited acetylcholine (ACh, 10 mu M)-induced contractions, with a threshold for activity of I mu M. PF3 induced concentration-dependent contractions of H. contortus (activity threshold, 10 nM) and enhanced ACh contractions. Compared with the MH isolate, an isolate of H. contortus which has reduced sensitivity to cholinergic drugs (Lawes isolate) was less sensitive to the effects of PF3. The concentration-response curves for the cholinergic compounds ACh and levamisole (LEV), and PF3, but not a control, KPNFIRFamide (PF4), showed a statistically similar shift. This study implicates PF3 in the modulation of cholinergic function in H. contortus. (C) 1999 Elsevier Science B.V. All rights reserved.