140 resultados para CLEAVAGE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nidoviruses (arteriviruses, coronaviruses, and roniviruses) are a phylogenetically compact but diverse group of positive-strand RNA viruses that includes important human and animal pathogens. Nidovirus RNA synthesis is mediated by a cytoplasmic membrane-associated replication/transcription complex that includes up to 16 viral nonstructural proteins (nsps), which carry common enzymatic activities, like the viral RNA polymerase, but also unusual and poorly understood RNA-processing functions. Of these, a conserved endoribonuclease (NendoU) is a major genetic marker that is unique to nidoviruses. NendoU activity was previously verified in vitro for the coronavirus nsp15, but not for any of its distantly related orthologs from other nidovirus lineages, like the arterivirus nsp11. Here, we show that the bacterially expressed nsp11 proteins of two arteriviruses, equine arteritis virus and porcine respiratory and reproductive syndrome virus, possess pyrimidine-specific endoribonuclease activity. RNA cleavage was independent of divalent cations in vitro and was greatly reduced by replacement of residues previously implicated in catalysis. Comparative characterization of the NendoU activity in arteriviruses and severe acute respiratory syndrome coronavirus revealed common and distinct features of their substrate requirements and reaction mechanism. Our data provide the first biochemical evidence of endoribonuclease activity associated with arterivirus nsp11 and support the conclusion that this remarkable RNA-processing enzyme, whose substrate in the infected cell remains to be identified, distinguishes nidoviruses from all other RNA viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phosphonopyruvate hydrolase (PalA) found in Variovorax sp., Pal2, is a novel carbon-phosphorus bond cleavage enzyme, which is expressed even in the presence of high levels of phosphate, thus permitting phosphonopyruvate to be used as the sole carbon and energy source. Analysis of the regions adjacent to the palA gene revealed the presence of the five structural genes that constitute the 2-amino-3-phosphonopropionic acid (phosphonoalanine)-degradative operon. Reverse transcriptase-PCR (RT-PCR) experiments demonstrated that all five genes in the operon are transcribed as a single mRNA and that their transcription is induced by phosphonoalanine or phosphonopyruvate. Transcriptional fusions of the regulatory region of the phosphonoalanine degradative operon with the gfp gene were constructed. Expression analysis indicated that the presence of a LysR-type regulator (encoded by the palR gene) is essential for the transcription of the structural genes of the operon. Similar gene clusters were found in the sequenced genomes of six bacterial species from the Alpha-, Beta- and Gammaproteobacteria, and analysis of metagenomic libraries revealed that sequences related to palA are widely spread in the marine environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we describe the structural and functional characterization of a novel myotropic peptide, sauvatide, from the skin secretion of the waxy monkey frog, Phyllomedusa sauvagei. Sauvatide is a C-terminally amidated decapeptide with the following primary structure – LRPAILVRTKamide – monoisotopic mass 1164.77 Da, which was found to contract the smooth muscle of rat urinary bladder with an EC50 of 2.2 nM. The sauvatide precursor, deduced from cloned skin cDNA, consists of 62 amino acid residues with a single copy of sauvatide located near the C-terminus. The mature peptide is generated from the precursor by cleavage at a classical –KR-cleavage site located proximal to the N-terminus and by removal of a –GKGK sequence at the C-terminus, the first glycyl residue acting as amide donor. Amphibian skin secretions thus continue to be a source of novel and potent biologically active peptides acting through functional targets in mammalian tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (DPP IV) is a widely distributed physiological enzyme that can be found solubilized in blood, or membrane-anchored in tissues. DPP IV and related dipeptidase enzymes cleave a wide range of physiological peptides and have been associated with several disease processes including Crohn's disease, chronic liver disease, osteoporosis, multiple sclerosis, eating disorders, rheumatoid arthritis, cancer, and of direct relevance to this review, type 2 diabetes. Here, we place particular emphasis on two peptide substrates of DPP IV with insulin-releasing and antidiabetic actions namely, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The rationale for inhibiting DPP IV activity in type 2 diabetes is that it decreases peptide cleavage and thereby enhances endogenous incretin hormone activity. A multitude of novel DPP IV inhibitor compounds have now been developed and tested. Here we examine the information available on DPP IV and related enzymes, review recent preclinical and clinical data for DPP IV inhibitors, and assess their clinical significance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first step of the mineralisation of fosfomycin by R. huakuii PMY1 is hydrolytic ring opening with the formation of (1R, 2R)-1,2-dihydroxypropylphosphonic acid. This phosphonic acid and its three stereoisomers were synthesised by chemical means and tested as their ammonium salts for mineralisation as evidenced by release of P-i. Only the (1R, 2R)-isomer was degraded. A number of salts of phosphonic acids such as (+/-)-1,2-epoxybutyl-, (+/-)-1,2-dihydroxyethyl-, 2-oxopropyl-, (+/-)-2-hydroxypropyl-, (+/-)-1-hydroxypropyl- and (+/-)-1-hydroxy-2-oxopropylphosphonic acid were synthesised chemically, but none supported growth. In vitro C-P bond cleavage activity was however detected with the last phosphonic acid. A mechanism involving phosphite had to be discarded as it could not be used as a phosphorus source. R. huakuii PMY1 grew well on (R)- and ( S)- lactic acid and hydroxyacetone, but less well on propionic acid and not on acetone or (R)- and (+/-)-1,2-propanediol. The Pi released from (1R, 2R)-1,2-dihydroxypropylphosphonic acid labelled with one oxygen-18 in the PO3H2 group did not stay long enough in the cells to allow complete exchange of O-18 for O-16 by enzymic turnover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phnA gene that encodes the carbon-phosphorus bond cleavage enzyme phosphonoacetate hydrolase is widely distributed in the environment, suggesting that its phosphonate substrate may play a significant role in biogeochemical phosphorus cycling. Surprisingly, however, no biogenic origin for phosphonoacetate has yet been established. To facilitate the search for its natural source we have constructed a whole-cell phosphonoacetate biosensor. The gene encoding the LysR-type transcriptional activator PhnR, which controls expression of the phosphonoacetate degradative operon in Pseudomonas fluorescens 23F, was inserted in the broad-host-range promoter probe vector pPROBE-NT, together with the promoter region of the structural genes. Cells of Escherichia coli DH5a that contained the resultant construct, pPANT3, exhibited phosphonoacetate-dependent green fluorescent protein fluorescence in response to threshold concentrations of as little as 0.5 µM phosphonoacetate, some 100 times lower than the detection limit of currently available non-biological analytical methods; the pPANT3 biosensor construct in Pseudomonas putida KT2440 was less sensitive, although with shorter response times. From a range of other phosphonates and phosphonoacetate analogues tested, only phosphonoacetaldehyde and arsonoacetate induced green fluorescent protein fluorescence in the E. coli DH5a (pPANT3) biosensor, although at much-reduced sensitivities (50 µM phosphonoacetaldehyde and 500 µM arsonoacetate).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Critics of consociational power-sharing institutional arrangements in deeply divided societies argue that such arrangements solidify the underlying conflict cleavage and render it all-important for party competition and voter behaviour. I find evidence to the contrary in the case of voter behaviour at the historic 2007 Assembly election in Northern Ireland. At least in the unionist bloc, I find the effective disappearance of the ethno-national conflict cleavage as a determinant of voter choice. This suggests that consociational arrangements have led to both inclusion and moderation, rather than polarisation and ‘ethnic outbidding’

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elafin is a neutrophil serine protease inhibitor expressed in lung and displaying anti-inflammatory and anti-bacterial properties. Previous studies demonstrated that some innate host defense molecules of the cystic fibrosis (CF) and chronic obstructive pulmonary disease airways are impaired due to increased proteolytic degradation observed during lung inflammation. In light of these findings, we thus focused on the status of elafin in CF lung. We showed in the present study that elafin is cleaved in sputum from individuals with CF. Pseudomonas aeruginosa-positive CF sputum, which was found to contain lower elafin levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective in cleaving recombinant elafin. NE plays a pivotal role in the process as only NE inhibitors are able to inhibit elafin degradation. Further in vitro studies demonstrated that incubation of recombinant elafin with excess of NE leads to the rapid cleavage of the inhibitor. Two cleavage sites were identified at the N-terminal extremity of elafin (Val-5—Lys-6 and Val-9—Ser-10). Interestingly, purified fragments of the inhibitor (Lys-6—Gln-57 and Ser-10—Gln-57) were shown to still be active for inhibiting NE. However, NE in excess was shown to strongly diminish the ability of elafin to bind lipopolysaccharide (LPS) and its capacity to be immobilized by transglutamination. In conclusion, this study provides evidence that elafin is cleaved by its cognate enzyme NE present at excessive concentration in CF sputum and that P. aeruginosa infection promotes this effect. Such cleavage may have repercussions on the innate immune function of elafin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secretory leukocyte protease inhibitor (SLPI) is an endogenous serine protease inhibitor that protects the lungs from excessive tissue damage caused by leukocyte proteases released during inflammation. Recombinant SLPI (rSLPI) has shown potential as a treatment for inflammatory lung conditions. To date, its clinical application has been limited by rapid enzymatic cleavage by cathepsins and rapid clearance from the lungs after inhalation. In this study, rSLPI was encapsulated in 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine] : Cholesterol (DOPS : Chol) liposomes for inhalation. Incubation of rSLPI with cathepsin L leads to complete loss of activity while encapsulation of rSLPI in DOPS : Chol liposomes retained 92.6 of its activity after challenge with cathepsin L. rSLPI-loaded liposomes were aerosolized efficiently using a standard nebulizer with a minimal loss of activity and stability. This formulation was biocompatible and encapsulation did not appear to diminish access to intracellular sites of action in in vitro cell culture studies. Liposome encapsulation of rSLPI therefore improves stability and potentially reduces the level and frequency of dosing required for therapeutic effect after inhalation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secretory leucoprotease inhibitor (SLPI) is a neutrophil serine protease inhibitor constitutively expressed at many mucosal surfaces, including that of the lung. Originally identified as a serine protease inhibitor, it is now evident that SLPI also has antimicrobial and anti-inflammatory functions, and therefore plays an important role in host defense. Previous work has shown that some host defense proteins such as SLPI and elafin are susceptible to proteolytic degradation. Consequently, we investigated the status of SLPI in the cystic fibrosis (CF) lung. A major factor that contributes to the high mortality rate among CF patients is Pseudomonas aeruginosa infection. In this study, we report that P. aeruginosa-positive CF bronchoalveolar lavage fluid, which contains lower SLPI levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective at cleaving recombinant human SLPI. Additionally, we found that only NE inhibitors were able to prevent SLPI cleavage, thereby implicating NE in this process. NE in excess was found to cleave recombinant SLPI at two novel sites in the NH(2)-terminal region and abrogate its ability to bind LPS and NF-kappaB consensus binding sites but not its ability to inhibit activity of the serine protease cathepsin G. In conclusion, this study provides evidence that SLPI is cleaved and inactivated by NE present in P. aeruginosa-positive CF lung secretions and that P. aeruginosa infection contributes to inactivation of the host defense screen in the CF lung.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proto-oncogene Ras undergoes a series of post-translational modifications at its carboxyl-terminal CAAX motif that are essential for its proper membrane localization and function. One step in this process is the cleavage of the CAAX motif by the enzyme Ras-converting enzyme 1 (RCE1). Here we show that the deubiquitinating enzyme USP17 negatively regulates the activity of RCE1. We demonstrate that USP17 expression blocks Ras membrane localization and activation, thereby inhibiting phosphorylation of the downstream kinases MEK and ERK. Furthermore, we show that this effect is caused by the loss of RCE1 catalytic activity as a result of its deubiquitination by USP17. We also show that USP17 and RCE1 co-localize at the endoplasmic reticulum and that USP17 cannot block proliferation or Ras membrane localization in RCE1 null cells. These studies demonstrate that USP17 modulates Ras processing and activation, at least in part, by regulating RCE1 activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphonates are characterized by a stable carbon-phosphorus bond and commonly occur as lipid conjugates in invertebrate cell membranes. Phosphonoacetate hydrolase encoded by the phnA gene, catalyses the cleavage of phosphonoacetate to acetate and phosphate. In this study, we demonstrate the unusually high phnA diversity in coral-associated bacteria. The holobiont of eight coral species tested positive when screened for phnA using degenerate primers. In two soft coral species, Sinularia and Discosoma, sequencing of the phnA gene showed 13 distinct groups on the basis of 90% sequence identity across 100% of the sequence. A total of 16 bacterial taxa capable of using phosphonoacetate as the sole carbon and phosphorus source were isolated; 8 of which had a phnA+ genotype. This study enhances our understanding of the wide taxonomic and environmental distribution of phnA, and highlights the importance of phosphonates in marine ecosystems. The ISME Journal (2010) 4, 45-461; doi:10.1038/ismej.2009.129; published online 3 December 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated enzymatically by proteolysis of an N-terminal domain. The cleavage and activation of PARs by serine proteases represent a novel mechanism by which such enzymes could influence the host inflammatory response. The aim of this study was to determine whether PAR-2 expression and activation were increased in dental caries. Using immunohistochemistry, we showed PAR-2 to be localized to pulp cells subjacent to caries lesions, but minimally expressed by healthy pulp tissue. Trypsin and the PAR-2 agonist (PAR2-AP) activated PAR-2 in an in vitro functional assay. Endogenous molecules present in pulp cell lysates from carious teeth specifically activated PAR-2, but those from healthy teeth failed to do so. The activation of PAR-2 in vitro was shown to increase the expression of the pro-inflammatory mediator cyclo-oxygenase-2 (COX-2), providing a mechanism whereby PAR-2 could modulate pulpal inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of gene function through RNA interference (RNAi)-based reverse genetics in plant parasitic nematodes (PPNs) remains inexplicably reliant on the use of long double-stranded RNA (dsRNA) silencing triggers; a practice inherently disadvantageous due to the introduction of superfluous dsRNA sequence. increasing chances of aberrant or off-target gene silencing through interactions between nascent short interfering RNAs (siRNAs) and non-cognate mRNA targets. Recently, we have shown that non-nematode, long dsRNAs have a propensity to elicit profound impacts on the phenotype and migrational abilities of both root knot and cyst nematodes. This study presents, to our knowledge for the first time, gene-specific knockdown of FMRFamide-like peptide (flp) transcripts, using discrete 21 bp siRNAs in potato cyst nematode Globodera pallida, and root knot nematode Meloidogyne incognita infective (J2) stage juveniles. Both knockdown at the transcript level through quantitative (q)PCR analysis and functional data derived from migration assay, indicate that siRNAs targeting certain areas of the FMRFamide-like peptide (FLP) transcripts are potent and specific in the silencing of gene function. In addition, we present a method of manipulating siRNA activity through the management of strand thermodynamics. Initial evaluation of strand thermodynamics as a determinant of RNA-induced Silencing Complex (RISC) strand selection (inferred from knockdown efficacy) in the siRNAs presented here suggested that the purported influence of 5' stand stability on guide incorporation may be somewhat promiscuous. However, we have found that on strategically incorporating base mismatches in the sense strand of a G. pallida-specific siRNA we could specifically increase or decrease the knockdown of its target (specific to the antisense strand), presumably through creating more favourable thermodynamic profiles for incorporation of either the sense (non-target-specific) or antisense (target-specific) strand into a cleavage-competent RISC. Whilst the efficacy of similar approaches to siRNA modification has been demonstrated in the context of Drosophila whole-cell lysate preparations and in mammalian cell cultures, it remained to be seen how these sense strand mismatches may impact on gene silencing in vivo, in relation to different targets and in different sequence contexts. This work presents the first application of such an approach in a whole organism; initial results show promise. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haigh, David; Birrell, Helen C.; Cantello, Barrie C. C.; Eggleston, Drake S.; Haltiwanger, R. Curtis; Hindley, Richard M.; Ramaswamy, Anantha; Stevens, Nicola C. Department of Medicinal Chemistry, SmithKline Beecham Pharmaceuticals, Essex, UK. Tetrahedron: Asymmetry (1999), 10(7), 1353-1367. Publisher: Elsevier Science Ltd., CODEN: TASYE3 ISSN: 0957-4166. Journal written in English. CAN 131:144537 AN 1999:369514 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract Boron-mediated asym. aldol reactions of 4-[2-(2-benzoxazolylmethylamino)ethoxy]benzaldehyde with 2-oxyethanoyloxazolidinones contg. electron withdrawing, chelating, and bulky alkoxy and aryloxy groups, gave variable yields of syn-aldol adducts in high diastereoisomeric excess. These adducts were dehydroxylated in a sequence which complements the traditional Evans asym. alkylation strategy. Cleavage of the auxiliary from these intermediates afforded antihyperglycemic (S)-(-)-2-oxy-3-arylpropanoic acids in excellent enantiomeric excess. The target compds. were ?-alkoxy-4-[2-[(benzoxazolyl)amino]ethoxy]benzenepropanoic acid derivs. The biol. activity of the compds. thus prepd. was not reported here.