60 resultados para CD40 LIGAND
Resumo:
Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency, such that acetate (C2) has been described as FFA2 selective while propionate (C3) is non-selective. Although C2 was confirmed to be selective for human FFA2 over FFA3, this ligand was not selective between the mouse orthologs. Moreover, although C3 was indeed not selective between the human orthologs it displayed clear selectivity for mouse FFA3 over mouse FFA2. This altered selectivity to C2 and C3 resulted from broad differences in SCFAs potency at the mouse orthologs. In studies to define the molecular basis for these observations marked variation in ligand-independent, constitutive activity was identified. The orthologs with higher potency for the SCFAs, human FFA2 and mouse FFA3, displayed high constitutive activity while the orthologs with lower potency for the agonist ligands, mouse FFA2 and human FFA3, did not. Sequence alignments of the 2nd extracellular loop identified single negatively charged residues in FFA2 and FFA3 not conserved between species and predicted to form ionic lock interactions with arginine residues within the FFA2 or FFA3 agonist binding pocket to regulate constitutive activity and SCFA potency. Reciprocal mutation of these residues between species orthologs resulted in the induction (or repression) of constitutive activity, and in most cases also yielded corresponding changes in SCFA potency.
Resumo:
Although earthworms have been found to inhabit arsenic-rich soils in the U.K., the mode of arsenic detoxification is currently unknown. Biochemical analyses and subcellular localization studies have indicated that As3+-thiol complexes may be involved; however, it is not known whether arsenic is capable of inducing the expression of metallothionein (MT) in earthworms. The specific aims of this paper were (a) to detect and gain an atomic characterization of ligand complexing by X-ray absorption spectrometry (XAS), and (b) to employ a polyclonal antibody raised against an earthworm MT isoform (w-MT2) to detect and localize the metalloprotein by immunoperoxidase histochemistry in the tissues of earthworms sampled from arsenic-rich soil. Data suggested that the proportion of arsenate to sulfur-bound species varies within specific earthworm tissues. Although some arsenic appeared to be in the form of arsenobetaine, the arsenic within the chlorogogenous tissue was predominantly coordinated with S in the form of -SH groups. This suggests the presence of an As::MT complex. Indeed, MT was detectable with a distinctly localized tissue and cellular distribution. While MT was not detectable in the surface epithelium or in the body wall musculature, immunoperoxidase histochemistry identified the presence of MT in chloragocytes around blood vessels, within the typhlosolar fold, and in the peri-intestinal region. Focal immunostaining was also detectable in a cohort of cells in the intestinal wall. The results of this study support the hypothesis that arsenic induces MT expression and is sequestered by the metalloprotein in certain target cells and tissues.
Resumo:
Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R silenced worms also display an increase in migration rate. This work demonstrates that Gp30 flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida, and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR. © 2013 Atkinson et al.
Resumo:
Electrodeposition of metals onto conductive supports such as graphite potentially provides a lower-waste method to form heterogeneous catalysts than the standard methods such as wet impregnation. Copper electrodeposition onto pressed graphite disc electrodes was investigated from aqueous CuSO4-ethylenediamine solutions by chronoamperometry with scanning electron microscopy used to ascertain the particle sizes obtained by this method. The particle size was studied as a function of pH, CuSO4-ethylenediamine concentration, and electrodeposition time. It was observed that decreasing the pH, copper-ethylenediamine concentration and time each decreased the size of the copper particles observed, with the smallest obtained being around 5-20 nm. Furthermore, electroless aerobic oxidation of copper metal in the presence of ethylenediamine was successfully coupled with the electrodeposition in the same vessel. In this way, deposition was achieved sequentially on up to twenty different graphite discs using the same ethylenediamine solution, demonstrating the recyclability of the ligand. The materials thus prepared were shown to be catalytically active for the mineralisation of phenol by hydrogen peroxide. Overall, the results provide a proof-of-principle that by making use of aerobic oxidation coupled with electrochemical deposition, elemental base metals can be used directly as starting materials to form heterogeneous catalysts without the need to use metal salts as catalyst precursors.
Resumo:
Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.
Resumo:
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinaemia and antibody deficiency to both T dependent and independent antigens. Patients suffer from recurrent sinopulmonary infections mostly caused by Streptococcus pneumoniae and Haemophilus influenzae, but also gastrointestinal or autoimmune symptoms. Their response to vaccination is poor or absent. In this study we investigated B cell activation induced by the TLR9 specific ligand (CpG-ODN) and bacterial extracts from S. pneumoniae and H. influenzae known to stimulate several TLR. We found that B cells from CVID patients express lower levels of CD86 after stimulation with CpG-ODN, S. pneumoniae and H. influenzae extracts in combination with anti-IgM antibody and also display a lower proliferative index when stimulated with bacterial extracts. Our results point to a broad TLR signalling defect in B lymphocytes from CVID patients that may be related to the hypogammaglobulinaemia and poor response to vaccination characteristic of these patients.
Resumo:
A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin-benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations.
Resumo:
Carboxyl-functionalized multiwalled carbon nanotubes (MWCNTs) have been successfully radiolabelled with cobalt-57 (57Co) (T1/2 = 270 days) via the attachment of the bifunctional caged ligand MeAMN3S3sar. In this study MeAMN3S3sar has been synthesized and coupled to MWCNTs to form the conjugate MWCNT–MeAMN3S3sar. Synthesis was confirmed with nuclear magnetic resonance. X-ray photoelectron spectroscopy (XPS) confirmed the conjugation. Non-radioactive labelling of this conjugate was completed with Cu(II) ions to confirm the stability of the MeAMN3S3sar after coupling with the MWCNTs. The complexation of the Cu(II) was also confirmed with XPS. Transmission electron microscopy was used to demonstrate that the coupling reaction had a negligible effect on the size and shape of the MWCNTs. Radiolabelling of the MWCNT–MeAMN3S3sar conjugate and pristine (untreated) MWCNTs (non-specific) with the gamma-emitting radioactive isotope 57Co were compared. The radiolabelling efficiency of the MWCNT–MeAMN3S3sar conjugate was significantly higher (95% vs. 0.1%) (P ⩽ 0.001) than for the unconjugated pristine MWCNTs. This will allow for the potential tracking of nanoparticle movement in vitro and in vivo.
Resumo:
Activation of the MET oncogenic pathway has been implicated in the development of aggressive cancers that are difficult to treat with current chemotherapies. This has led to an increased interest in developing novel therapies that target the MET pathway. However, most existing drug modalities are confounded by their inability to specifically target and/or antagonize this pathway. Anticalins, a novel class of monovalent small biologics, are hypothesized to be "fit for purpose" for developing highly specific and potent antagonists of cancer pathways. Here, we describe a monovalent full MET antagonist, PRS-110, displaying efficacy in both ligand-dependent and ligand-independent cancer models. PRS-110 specifically binds to MET with high affinity and blocks hepatocyte growth factor (HGF) interaction. Phosphorylation assays show that PRS-110 efficiently inhibits HGF-mediated signaling of MET receptor and has no agonistic activity. Confocal microscopy shows that PRS-110 results in the trafficking of MET to late endosomal/lysosomal compartments in the absence of HGF. In vivo administration of PRS-110 resulted in significant, dose-dependent tumor growth inhibition in ligand-dependent (U87-MG) and ligand-independent (Caki-1) xenograft models. Analysis of MET protein levels on xenograft biopsy samples show a significant reduction in total MET following therapy with PRS-110 supporting its ligand-independent mechanism of action. Taken together, these data indicate that the MET inhibitor PRS-110 has potentially broad anticancer activity that warrants evaluation in patients.
Resumo:
Although the use of ball milling to induce reactions between solids (mechanochemical synthesis) can provide lower-waste routes to chemical products by avoiding solvent during the reaction, there are further potential advantages in using one-pot multistep syntheses to avoid the use of bulk solvents for the purification of intermediates. We report here two-step syntheses involving formation of salen-type ligands from diamines and hydroxyaldehydes followed directly by reactions with metal salts to provide the corresponding metal complexes. Five salen-type ligands 2,2'-[1,2-ethanediylbis[(E)-nitrilomethylidyne]] bisphenol, ` salenH2', 1; 2,2'-[(+/-)-1,2-cyclohexanediylbis-[(E)-nitrilomethylidyne]] bis-phenol, 2; 2,2'-[1,2-phenylenebis( nitrilomethylidyne)]-bis-phenol, ` salphenH2' 3; 2-[[(2-aminophenyl) imino] methyl]-phenol, 4; 2,2'-[(+/-)-1,2-cyclohexanediylbis[(E)-nitrilomethylidyne]]-bis[4,6-bis(1,1-dimethylethyl)]-phenol, ` Jacobsen ligand', 5) were found to form readily in a shaker-type ball mill at 0.5 to 3 g scale from their corresponding diamine and aldehyde precursors. Although in some cases both starting materials were liquids, ball milling was still necessary to drive those reactions to completion because precipitation of the product and or intermediates rapidly gave in thick pastes which could not be stirred conventionally. The only ligand which required the addition of solvent was the Jacobsen ligand 5 which required 1.75 mol equivalents of methanol to go to completion. Ligands 1-5 were thus obtained directly in 30-60 minutes in their hydrated forms, due to the presence of water by-product, as free-flowing yellow powders which could be dried by heating to give analytically pure products. The one-armed salphen ligand 4 could also be obtained selectively by changing the reaction stoichiometry to 1 : 1. SalenH(2) 1 was explored for the onepot two-step synthesis of metal complexes. In particular, after in situ formation of the ligand by ball milling, metal salts (ZnO, Ni(OAc)2 center dot 4H(2)O or Cu(OAc)(2)center dot H2O) were added directly to the jar and milling continued for a further 30 minutes. Small amounts of methanol (0.4-1.1 mol equivalents) were needed for these reactions to run to completion. The corresponding metal complexes [M(salen)] (M = Zn, 6; Ni, 7; or Cu, 8) were thus obtained quantitatively after 30 minutes in hydrated form, and could be heated briefly to give analytically pure dehydrated products. The all-at-once ` tandem' synthesis of [Zn(salen)] 6 was also explored by milling ZnO, ethylene diamine and salicylaldehyde together in the appropriate mole ratio for 60 minutes. This approach also gave the target complex selectively with no solvent needing to be added. Overall, these syntheses were found to be highly efficient in terms of time and the in avoidance of bulk solvent both during the reaction and for the isolation of intermediates. The work demonstrates the applicability of mechanochemical synthesis to one-pot multi-step strategies.
Resumo:
Instead of highly symmetrical T-symmetry cages common in self-assembly, the p-NMe2-substituted triphosphine CH3C{CH2P(4-C6H4NMe2)(3) gives open, polar C-3 symmetry cages [Ag-6(triphos)(4)X-3](3+) which lack one of the expected face-capping anions; despite its subtlety this difference occurs selectively in solution and two examples have been crystallographically characterised.
Resumo:
Aims: Recent ability to derive endothelial cells (ECs) from induced pluripotent stem (iPS) cells holds a great therapeutic potential for personalised medicine and stem cell therapy. We aimed that better understanding of the complex molecular signals that are evoked during iPS cell differentiation towards ECs may allow specific targeting of their activities to enhance cell differentiation and promote tissue regeneration.
Methods and Results: In this study we have generated mouse iPS cells from fibroblasts using established protocol. When iPS cells were cultivated on type IV mouse collagen-coated dishes in differentiation medium, cell differentiation toward vascular lineages were observed. To study the molecular mechanisms of iPS cell differentiation, we found that miR-199b is involved in EC differentiation. A step-wise increase in expression of miR-199 was detected during EC differentiation. Notably, miR-199b targeted the Notch ligand JAG1, resulting in VEGF transcriptional activation and secretion through the transcription factor STAT3. Upon shRNA-mediated knockdown of the Notch ligand JAG1, the regulatory effect of miR-199b was ablated and there was robust induction of STAT3 and VEGF during EC differentiation. Knockdown of JAG1 also inhibited miR-199b-mediated inhibition of iPS cell differentiation towards SMCs. Using the in vitro tube formation assay and implanted Matrigel plugs, in vivo, miR-199b also regulated VEGF expression and angiogenesis.
Conclusions: This study indicates a novel role for miR-199b as a regulator of the phenotypic switch during vascular cell differentiation derived from iPS cells by regulating critical signaling angiogenic responses.
Resumo:
Discrimination of different species in various target scopes within a single sensing platform can provide many advantages such as simplicity, rapidness, and cost effectiveness. Here we design a three-input colorimetric logic gate based on the aggregation and anti-aggregation of gold nanoparticles (Au NPs) for the sensing of melamine, cysteine, and Hg2+. The concept takes advantages of the highly specific coordination and ligand replacement reactions between melamine, cysteine, Hg2+, and Au NPs. Different outputs are obtained with the combinational inputs in the logic gates, which can serve as a reference to discriminate different analytes within a single sensing platform. Furthermore, besides the intrinsic sensitivity and selectivity of Au NPs to melamine-like compounds, the “INH” gates of melamine/cysteine and melamine/Hg2+ in this logic system can be employed for sensitive and selective detections of cysteine and Hg2+, respectively.
Resumo:
BACKGROUND: The free fatty acid receptors (FFAs), including FFA1 (orphan name: GPR40), FFA2 (GPR43) and FFA3 (GPR41) are G protein-coupled receptors (GPCRs) involved in energy and metabolic homeostasis. Understanding the structural basis of ligand binding at FFAs is an essential step toward designing potent and selective small molecule modulators.
RESULTS: We analyse earlier homology models of FFAs in light of the newly published FFA1 crystal structure co-crystallized with TAK-875, an ago-allosteric ligand, focusing on the architecture of the extracellular binding cavity and agonist-receptor interactions. The previous low-resolution homology models of FFAs were helpful in highlighting the location of the ligand binding site and the key residues for ligand anchoring. However, homology models were not accurate in establishing the nature of all ligand-receptor contacts and the precise ligand-binding mode. From analysis of structural models and mutagenesis, it appears that the position of helices 3, 4 and 5 is crucial in ligand docking. The FFA1-based homology models of FFA2 and FFA3 were constructed and used to compare the FFA subtypes. From docking studies we propose an alternative binding mode for orthosteric agonists at FFA1 and FFA2, involving the interhelical space between helices 4 and 5. This binding mode can explain mutagenesis results for residues at positions 4.56 and 5.42. The novel FFAs structural models highlight higher aromaticity of the FFA2 binding cavity and higher hydrophilicity of the FFA3 binding cavity. The role of the residues at the second extracellular loop used in mutagenesis is reanalysed. The third positively-charged residue in the binding cavity of FFAs, located in helix 2, is identified and predicted to coordinate allosteric modulators.
CONCLUSIONS: The novel structural models of FFAs provide information on specific modes of ligand binding at FFA subtypes and new suggestions for mutagenesis and ligand modification, guiding the development of novel orthosteric and allosteric chemical probes to validate the importance of FFAs in metabolic and inflammatory conditions. Using our FFA homology modelling experience, a strategy to model a GPCR, which is phylogenetically distant from GPCRs with the available crystal structures, is discussed.