150 resultados para Bmp Antagonist
Resumo:
The peptidic nature of anti-IAPs N-terminus Smac-derived peptides precludes their utilization as potential therapeutic anticancer agents. Recent advances in the development of novel Smac-derived peptidomimetics and non-peptidic molecules with improved anti-IAPs activity and resistance to proteolytic cleavage have been reported and led to a number of candidates that are currently in clinical trials including LCL-161, SM-406/AT-406, GDC-0512/GDC-0917, and birinapant. As an attempt to improve the proteolytic stability of Smac peptides, we developed the Aza-peptide AzaAla-Val-Pro-Phe-Tyr-NH2 (2). Unlike unmodified peptide Ala-Val-Pro-Phe-Tyr-NH2 (1), analogue (2) exhibited resistance towards proteolytic cleavage by two aminopeptidases; LAP and DPP-IV, while retaining its IAP inhibitory activity. This was due to the altered planar geometry of the P1 residue side chain. Our findings showed that using aza-isosteres of bioactive peptide sequences imbue the residue with imperviousness to proteolysis; underscoring a potential approach for developing a new generation of Smac-derived Aza-peptidomimetics.
Resumo:
BACKGROUND AND PURPOSE: Among the pathogenic mechanisms of asthma, a role for oxidative/nitrosative stress has been well documented. Recent evidence suggests that histamine H₄ receptors play a modulatory role in allergic inflammation. Here we report the effects of compound JNJ 7777120 (JNJ), a selective H4 receptor antagonist, on antigen-induced airway inflammation, paying special attention to its effects on lipocortin-1 (LC-1/annexin-A1), a 37 kDA anti-inflammatory protein that plays a key role in the production of inflammatory mediators.
EXPERIMENTAL APPROACH: Ovalbumin (OA)-sensitized guinea pigs placed in a respiratory chamber were challenged with antigen. JNJ (5, 7.5 and 10 mg.kg⁻¹) was given i.p. for 4 days before antigen challenge. Respiratory parameters were recorded. Bronchoalveolar lavage (BAL) fluid was collected and lung specimens taken for further analyses 1 h after antigen challenge. In BAL fluid, levels of LC-1, PGD2 , LTB4 and TNF-α were measured. In lung tissue samples, myeloperoxidase, caspase-3 and Mn-superoxide dismutase activities and 8-hydroxy-2-deoxyguanosine levels were measured.
KEY RESULTS: OA challenge decreased LC-1 levels in BAL fluid, induced cough, dyspnoea and bronchoconstriction and increased PGD2 , LTB4 and TNF-α levels in lung tissue. Treatment with JNJ dose-dependently increased levels of LC-1, reduced respiratory abnormalities and lowered levels of PGD2 , LTB4 and TNF-α in BAL fluid.
CONCLUSIONS AND IMPLICATIONS: Antigen-induced asthma-like reactions in guinea pigs decreased levels of LC-1 and increased TNF-α and eicosanoid production. JNJ pretreatment reduced allergic asthmatic responses and airway inflammation, an effect associated with LC-1 up-regulation.
Resumo:
Colorectal cancer is the second most common cause of cancer-related death in the United States. Recent studies showed that interleukin-8 (IL-8) and its receptors (CXCR1 and CXCR2) are significantly upregulated in both the tumor and its microenvironment, and act as key regulators of proliferation, angiogenesis, and metastasis. Our previous study showed that IL-8 overexpression in colorectal cancer cells triggers the upregulation of the CXCR2-mediated proliferative pathway. The aim of this study was to investigate whether the CXCR2 antagonist, SCH-527123, inhibits colorectal cancer proliferation and if it can sensitize colorectal cancer cells to oxaliplatin both in vitro and in vivo. SCH-527123 showed concentration-dependent antiproliferative effects in HCT116, Caco2, and their respective IL-8-overexpressing variants colorectal cancer cell lines. Moreover, SCH-527123 was able to suppress CXCR2-mediated signal transduction as shown through decreased phosphorylation of the NF-κB/mitogen-activated protein kinase (MAPK)/AKT pathway. These findings corresponded with decreased cell migration and invasion, while increased apoptosis in colorectal cancer cell lines. In vivo results verified that SCH-527123 treatment decreased tumor growth and microvessel density when compared with vehicle-treated tumors. Importantly, these preclinical studies showed that the combination of SCH-527123 and oxaliplatin resulted in a greater decrease in cell proliferation, tumor growth, apoptosis, and angiogenesis that was superior to single-agent treatment. Taken together, these findings suggest that targeting CXCR2 may block tumor proliferation, migration, invasion, and angiogenesis. In addition, CXCR2 blockade may further sensitize colorectal cancer to oxaliplatin treatment.
Resumo:
PTEN loss is prognostic for patient relapse post-radiotherapy in prostate cancer (CaP). Infiltration of tumor-associated macrophages (TAMs) is associated with reduced disease-free survival following radical prostatectomy. However, the association between PTEN loss, TAM infiltration and radiotherapy response of CaP cells remains to be evaluated. Immunohistochemical and molecular analysis of surgically-resected Gleason 7 tumors confirmed that PTEN loss correlated with increased CXCL8 expression and macrophage infiltration. However PTEN status had no discernable correlation with expression of other inflammatory markers by CaP cells, including TNF-α. In vitro, exposure to conditioned media harvested from irradiated PTEN null CaP cells induced chemotaxis of macrophage-like THP-1 cells, a response partially attenuated by CXCL8 inhibition. Co-culture with THP-1 cells resulted in a modest reduction in the radio-sensitivity of DU145 cells. Cytokine profiling revealed constitutive secretion of TNF-α from CaP cells irrespective of PTEN status and IR-induced TNF-α secretion from THP-1 cells. THP-1-derived TNF-α increased NFκB pro-survival activity and elevated expression of anti-apoptotic proteins including cellular inhibitor of apoptosis protein-1 (cIAP-1) in CaP cells, which could be attenuated by pre-treatment with a TNF-α neutralizing antibody. Treatment with a novel IAP antagonist, AT-IAP, decreased basal and TNF-α-induced cIAP-1 expression in CaP cells, switched TNF-α signaling from pro-survival to pro-apoptotic and increased radiation sensitivity of CaP cells in co-culture with THP-1 cells. We conclude that targeting cIAP-1 can overcome apoptosis resistance of CaP cells and is an ideal approach to exploit high TNF-α signals within the TAM-rich microenvironment of PTEN-deficient CaP cells to enhance response to radiotherapy.
Resumo:
In anesthetized rats, we characterized the contributions of norepinephrine (NE) and ATP to changes in tail and hindlimb (femoral) vascular resistances (TVR and FVR, respectively) evoked by three patterns of sympathetic stimulation: 1) couplets (2 impulses at 20 Hz), 2) short trains (20 impulses at 20 Hz), and 3) a natural irregular pattern previously recorded from a sympathetic fiber innervating the rat tail artery. All stimuli evoked greater changes in TVR than FVR. Judging from the effects of the -adrenoceptor antagonist phentolamine, the purinergic receptor antagonist suramin, or ,-methylene ATP (which desensitizes P2X receptors), we propose that NE has a major role in the constriction evoked by the couplet, as well as by the short train and by the low- and high-frequency components of the natural pattern, but that considerable synergy occurred between the actions of ATP and NE. This contrasts with previous in vitro studies that indicated that ATP dominates vascular responses evoked by sympathetic stimulation with a few impulses at low frequency and that NE dominates responses to longer trains or at high frequencies.
Resumo:
Glucosedependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine Kcells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro(3))GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro(3))GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Nonfasting plasma glucose concentrations were significantly raised (p
Resumo:
Latent inhibition (LI) is a behavioural paradigm in which repeated exposure to a stimulus without consequence inhibits the formation of any new associations with that stimulus. To the extent that LI reflects a process of learning to ignore irrelevant stimuli, disrupted LI has been suggested as an animal model for the attentional deficits observed in schizophrenia. The antipsychotic potential of cholecystokinin (CCK) stems from its colocalization with dopamine (DA) in the mesolimbic pathway, where it demonstrates both excitatory and inhibitory effects on dopaminergic activity. This may be explained by mediation through different receptor subtypes. A variety of hypotheses has emerged regarding the potential clinical application of subtype-selective CCK-based drugs. The present experiments examined the effects on LI of two selective CCKA ligands: PD-140,548 (a CCKA antagonist, Experiment 1: 0.001, 0.01, and 0.1 mg/kg) and A-71623 (a CCKA agonist, Experiment 2: 0.02, 0.05, and 0.1 mg/kg). In both experiments, the effects of haloperidol (0.1 mg/kg) were also investigated. Animals receiving 0.1 mg/kg of haloperidol or 0.001 or 0.1 mg/kg (but not 0.01 mg/kg) of PD-140,548 treated the preexposed stimulus as irrelevant after a low number of preexposures. In contrast, no facilitatory effect on LI was detectable at any of the A-71623 doses. The finding that A-71623 failed to enhance LI indicates that it is unlikely that this compound would have any antipsychotic effect within the clinical setting. Considering the facilitatory effect exerted by PD-140,548 on LI, it is probable that the inhibition of CCK activity might prove a more promising strategy for the pharmacological treatment of schizophrenia.
Time for treating bone fracture using rhBMP-2: a randomised placebo controlled mouse fracture trial.
Resumo:
Although the mechanisms of osteoinduction by bone morphogenic proteins (BMPs) are increasingly understood, the most appropriate time to administer BMPs exogenously is yet to be clarified.The purpose of this study was to investigate when BMP may be administered to a fracture arena to maximise the enhancement of healing.Forty mice with externally fixed left femoral fractures were randomised into four groups: Group I, the control group was given a placebo of 30 ll saline at day 0; Groups II, III and IV were given 30 ll saline plus 2.5 lg rhBMP-2, at post-operative days 0, 4 or 8, respectively.Sequential radiographs were taken at days 0, 8, 16.On day 22 the mice were sacrificed and both femora were harvested for biomechanical assessment in 3-point bending and histological evaluation.Radiographic analysis indicated that healing of fractures in Groups II and III was significantly greater (p <0.05) than those in Groups I and IV, at both 16 and 22 days post-fracture. The highest median bone mineral content at the fracture site was evidenced in Group III and II.Furthermore, Group III also had the highest relative ultimate load values, followed by Groups II, IV and I.Greater percentage peak loads were observed between Group I and both Groups II and III (p <0.05). Histological examination confirmed that at 22 days post-fracture, only fractures in Groups II and III had united with woven bone, and Groups I and IV still had considerable amounts of fibrous tissue and cartilage at the fracture gap.Data presented herein indicates that there is a time after fracture when rhBMP administration is most effective, and this may be at the time of surgery as well as in the early fracture healing phases.
Resumo:
The high-affinity 67-kd laminin receptor (67LR) is expressed by proliferating endothelial cells during retinal neovascularization. The role of 67LR has been further examined experimentally by administration of selective 67LR agonists and antagonists in a murine model of proliferative retinopathy. These synthetic 67LR ligands have been previously shown to stimulate or inhibit endothelial cell motility in vitro without any direct effect on proliferation. In the present study, a fluorescently labeled 67LR antagonist (EGF33–42) was injected intraperitoneally into mice and its distribution in the retina was assessed by confocal scanning laser microscopy. Within 2 hours this peptide was localized to the retinal vasculature, including preretinal neovascular complexes, and a significant amount had crossed the blood retinal barrier. For up to 24 hours postinjection, the peptide was still present in the retinal vascular walls and, to a lesser extent, in the neural retina. Non-labeled EGF33–42 significantly inhibited pre-retinal neovascularization in comparison to controls treated with phosphate-buffered saline or scrambled peptide (P <0.0001). The agonist peptide (Lamß1925–933) also significantly inhibited proliferative retinopathy; however, it caused a concomitant reduction in retinal ischemia in this model by promoting significant revascularization of the central retina (P <0.001). Thus, 67LR appears to be an important target receptor for the modulation of retinal neovascularization. Agonism of this receptor may be valuable in reducing the hypoxia-stimulated release of angiogenic growth factors which drives retinal angiogenesis.
Resumo:
AIMS/HYPOTHESIS: To assess the effects of diabetes-induced activation of protein kinase C (PKC) on voltage-dependent and voltage-independent Ca2+ influx pathways in retinal microvascular smooth muscle cells. METHODS: Cytosolic Ca2+ was estimated in freshly isolated rat retinal arterioles from streptozotocin-induced diabetic and non-diabetic rats using fura-2 microfluorimetry. Voltage-dependent Ca2+ influx was tested by measuring rises in [Ca2+]i with KCl (100 mmol/l) and store-operated Ca2+ influx was assessed by depleting [Ca2+]i stores with Ca2+ free medium containing 5 micromol/l cyclopiazonic acid over 10 min and subsequently measuring the rate of rise in Ca2+ on adding 2 mmol/l or 10 mmol/l Ca2+ solution. RESULTS: Ca2+ entry through voltage-dependent L-type Ca2+ channels was unaffected by diabetes. In contrast, store-operated Ca2+ influx was attenuated. In microvessels from non-diabetic rats 20 mmol/l D-mannitol had no effect on store-operated Ca2+ influx. Diabetic rats injected daily with insulin had store-operated Ca2+ influx rates similar to non-diabetic control rats. The reduced Ca2+ entry in diabetic microvessels was reversed by 2-h exposure to 100 nmol/l staurosporine, a non-specific PKC antagonist and was mimicked in microvessels from non-diabetic rats by 10-min exposure to the PKC activator phorbol myristate acetate (100 nmol/l). The specific PKCbeta antagonist LY379196 (100 nmol/l) also reversed the poor Ca2+ influx although its action was less efficacious than staurosporine. CONCLUSION/INTERPRETATION: These results show that store-operated Ca2+ influx is inhibited in retinal arterioles from rats having sustained increased blood glucose and that PKCbeta seems to play a role in mediating this effect.
Resumo:
We cloned and characterized a 3.3-kb fragment containing the 5'-regulatory region of the human myostatin gene. The promoter sequence contains putative muscle growth response elements for glucocorticoid, androgen, thyroid hormone, myogenic differentiation factor 1, myocyte enhancer factor 2, peroxisome proliferator-activated receptor, and nuclear factor-kappaB. To identify sites important for myostatin's gene transcription and regulation, eight deletion constructs were placed in C(2)C(12) and L6 skeletal muscle cells. Transcriptional activity of the constructs was found to be significantly higher in myotubes compared with that of myoblasts. To investigate whether glucocorticoids regulate myostatin gene expression, we incubated both cell lines with dexamethasone. On both occasions, dexamethasone dose dependently increased both the promoter's transcriptional activity and the endogenous myostatin expression. The effects of dexamethasone were blocked when the cells were coincubated with the glucocorticoid receptor antagonist RU-486. These findings suggest that glucocorticoids upregulate myostatin expression by inducing gene transcription, possibly through a glucocorticoid receptor-mediated pathway. We speculate that glucocorticoid-associated muscle atrophy might be due in part to the upregulation of myostatin expression.
Resumo:
Increased levels of neuropeptide Y correlate with severity of left ventricular hypertrophy in vivo. At cardiomyocyte level, hypertrophy is characterised by increased mass and altered phenotype. The aims were to determine the contributions of increased synthesis and reduced degradation of protein to neuropeptide Y-mediated increase in mass, assess effects on gene expression, and characterise neuropeptide Y Y receptor subtype involvement. Neuropeptide Y (10 nM) increased protein mass of adult rat ventricular cardiomyocytes maintained in culture (24 h) (16%>basal) and de novo protein synthesis (incorporation of [14C]phenylalanine) (18%>basal). Neuropeptide Y (100 nM) prevented degradation of existing protein at 8 h. Actinomycin D (5 µM) attenuated increases in protein mass to neuropeptide Y (=1 nM) but not to neuropeptide Y (10 nM). [Leu31, Pro34]neuropeptide Y (10 nM), an agonist at neuropeptide Y Y1 receptors, increased protein mass (25%>basal) but did not stimulate protein synthesis. Neuropeptide Y-(3–36) (10 nM), an agonist at neuropeptide Y Y2 receptors, increased protein mass (29%>basal) and increased protein synthesis (13%>basal), respectively. Actinomycin D (5 µM) abolished the increase in protein mass elicited by neuropeptide Y-(3–36) but not that by [Leu31, Pro34]neuropeptide Y. BIBP3226 [(R)-N2-(diphenylacetyl)-N-(4-hydroxyphenylmethyl)-d-arginine amide] (1 µM), a neuropeptide Y Y1 receptor subtype-selective antagonist, and T4 [neuropeptide Y-(33–36)]4, a neuropeptide Y Y2 receptor subtype-selective antagonist, attenuated the increase in protein mass to 100 nM neuropeptide Y by 68% and 59%, respectively. Neuropeptide Y increased expression of the constitutive gene, myosin light chain-2 (MLC-2), maximally at 12 h (4.7-fold>basal) but did not induce (t=36 h) expression of foetal genes (atrial natriuretic peptide (ANP), skeletal-a-actin and myosin heavy chain-ß). This increase was attenuated by 86% and 51%, respectively, by BIBP3226 (1 µM) and T4 [neuropeptide Y-(33–36)]4 (100 nM). [Leu31, Pro34]neuropeptide Y (100 nM) (2.4-fold>basal) and peptide YY-(3–36) (100 nM) (2.3 fold>basal) increased expression of MLC-2 mRNA at 12 h. In conclusion, initiation of cardiomyocyte hypertrophy by neuropeptide Y requires activation of both neuropeptide Y Y1 and neuropeptide Y Y2 receptors and is associated with enhanced synthesis and attenuated degradation of protein together with increased expression of constitutive genes but not reinduction of foetal genes.