126 resultados para BOND-CLEAVAGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphonates are characterized by a stable carbon-phosphorus bond and commonly occur as lipid conjugates in invertebrate cell membranes. Phosphonoacetate hydrolase encoded by the phnA gene, catalyses the cleavage of phosphonoacetate to acetate and phosphate. In this study, we demonstrate the unusually high phnA diversity in coral-associated bacteria. The holobiont of eight coral species tested positive when screened for phnA using degenerate primers. In two soft coral species, Sinularia and Discosoma, sequencing of the phnA gene showed 13 distinct groups on the basis of 90% sequence identity across 100% of the sequence. A total of 16 bacterial taxa capable of using phosphonoacetate as the sole carbon and phosphorus source were isolated; 8 of which had a phnA+ genotype. This study enhances our understanding of the wide taxonomic and environmental distribution of phnA, and highlights the importance of phosphonates in marine ecosystems. The ISME Journal (2010) 4, 45-461; doi:10.1038/ismej.2009.129; published online 3 December 2009

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decomposition of methyl 2-diazophenylacetate in the presence of silanes and a chiral dirhodium(11) catalyst results in Si-H insertion of the intermediate carbenoid with varying degrees of enantioselectivity. New chiral dirhodium(11) carboxylate catalysts were identified using solution phase parallel synthesis techniques. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buck, Richard T.; Doyle, Michael P.; Drysdale, Martin J.; Ferris, Leigh; Forbes, David C.; Haigh, David; Moody, Christopher J.; Pearson, Neil D.; Zhou, Qi-Lin. Dep. Chemistry, Loughborough Univ., Loughborough, Leicestershire, UK. Tetrahedron Letters (1996), 37(42), 7631-7634. Publisher: Elsevier, CODEN: TELEAY ISSN: 0040-4039. Journal written in English. CAN 125:328854 AN 1996:644681 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract Decompn. of Me 2-diazophenylacetate in the presence of dimethylphenylsilane and a chiral dirhodium(II) catalyst results in Si-H insertion of the intermediate carbenoid to give PhCH(SiMe2Ph)CO2Me with varying degrees of enantioselectivity (up to 47% ee; 47% using (S)-Rh2L4, LH = I).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cantello, Barrier C. C.; Eggleston, Drake S.; Haigh, David; Haltiwanger, R. Curtis; Heath, Catherine M.; Hindley, Richard M.; Jennings, Keith R.; Sime, John T.; Woroniecki, Stefan R. SmithKline Beecham Pharmaceuticals, Surrey, UK. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1994), (22), 3319-24. Publisher: Royal Society of Chemistry, CODEN: JCPRB4 ISSN: 0300-922X. Journal written in English. CAN 122:105736 AN 1995:237497 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract A novel biotransformation system for the redn. of carbon-carbon double bonds in 5-benzylidenethiazolidine-2,4-diones to give the corresponding 5-benzylthiazolidine-1,4-diones, using whole cells of red yeasts, is described. These reduced compds., which are recovered in good yield, are of potential use in the treatment of non-insulin dependent diabetes mellitus. The mild reaction conditions developed allow redn. of 5-benzylidenethiazolidine-2,4-diones contg. other functionalities which are not compatible with alternative redn. methods. The biocatalytic redn. is enantioselective and the synthesis of R-(+)-5-(4-{2-[methyl(2-pyridyl)amino]ethoxy}benzyl)thiazolidine-2,4-dione by Rhodotorula rubra CBS 6469 and structure confirmation by X-ray crystallog. is detailed. Optimization of reaction conditions (including immobilization) for these whole cell redn. system is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical reduction of the disperse azo dyes Red1, Red13 and Orange1 (Or1) was investigated in the RTILs [C(4)mim][NTf2] and [C(4)mpyrr][NTf2], and in contrast with their behavior in conventional aprotic solvents, was shown to proceed via a reversible one electron step to form stable radical anion, which is further reduced at more negative potentials to the dianion. In [C(4)mpyrr][NTf2], cleavage of the N-H bond on the secondary amine was inferred for Orange1, and the ease at which this cleavage occurred is rationalized in terms of acidity of the amine moiety. The ease of reduction was observed to decrease in the order Or1 > Red13 > Red1, and is related to the electron delocalization within the molecule and the electron withdrawing power of the substituents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of bis(oxazoline) metal(II) complexes has been supported on silica and carbon supports by non-covalent immobilisation using an ionic liquid. The catalytic performance of these solids was compared for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methyl pyruvate and 1-methoxy-1-trimethylsilyloxy-propene. In both reactions the enantioselectivity was strongly influenced by the choice of support displaying enantioselectivies (ee values) up to 40% higher than those conducted under homogeneous reaction conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LL catalytic RNAs (ribozymes) require or are stimulated by divalent metal ions, but it has been difficult to separate the contribution of these metal ions to formation of the RNA tertiary structure1 from a more direct role in catalysis. The Tetrahymena ribozyme catalyses cleavage of exogenous RNA2,3 or DNA4,5 substrates with an absolute requirement for Mg2+ or Mn2+ (ref. 6). A DNA substrate, in which the bridging 3' oxygen atom at the cleavage site is replaced by sulphur, is cleaved by the ribozyme about 1,000 times more slowly than the corresponding unmodified DNA substrate when Mg2+ is present as the only divalent metal ion. But addition of Mn2+ or Zn2+ to the reaction relieves this negative effect, with the 3' S–P bond being cleaved nearly as fast as the 3' O–P bond. Considering that Mn2+ and Zn2+ coordinate sulphur more strongly than Mg2+ does7,8, these results indicate that the metal ion contributes directly to catalysis by coordination to the 3' oxygen atom in the transition state, presumably stabilizing the developing negative charge on the leaving group. We conclude that the Tetrahymena ribozyme is a metalloenzyme, with mechanistic similarities to several protein enzymes9–12.