76 resultados para ANTISENSE TRANSCRIPTION
Resumo:
Herein we describe our asymmetric total syntheses of (+)-A83586C, (+)-kettapeptin and (+)-azinothricin. We also demonstrate that molecules of this class powerfully inhibit beta-catenin/TCF4- and E2F-mediated gene transcription within malignant human colon cancer cells at low drug concentrations.
Resumo:
We develop an approach utilizing randomized genotypes to rigorously infer causal regulatory relationships among genes at the transcriptional level, based on experiments in which genotyping and expression profiling are performed. This approach can be used to build transcriptional regulatory networks and to identify putative regulators of genes. We apply the method to an experiment in yeast, in which genes known to be in the same processes and functions are recovered in the resulting transcriptional regulatory network.
Resumo:
RNA polymerase I (Pol I) produces large ribosomal RNAs (rRNAs). In this study, we show that the Rpa49 and Rpa34 Pol I subunits, which do not have counterparts in Pol II and Pol III complexes, are functionally conserved using heterospecific complementation of the human and Schizosaccharomyces pombe orthologues in Saccharomyces cerevisiae. Deletion of RPA49 leads to the disappearance of nucleolar structure, but nucleolar assembly can be restored by decreasing ribosomal gene copy number from 190 to 25. Statistical analysis of Miller spreads in the absence of Rpa49 demonstrates a fourfold decrease in Pol I loading rate per gene and decreased contact between adjacent Pol I complexes. Therefore, the Rpa34 and Rpa49 Pol I–specific subunits are essential for nucleolar assembly and for the high polymerase loading rate associated with frequent contact between adjacent enzymes. Together our data suggest that localized rRNA production results in spatially constrained rRNA production, which is instrumental for nucleolar assembly.
Resumo:
Introduction: Metastatic breast cancer cells frequently and ectopically express the transcription factor RUNX2, which normally attenuates proliferation and promotes maturation of osteoblasts. RUNX2 expression is inversely regulated with respect to cell growth in osteoblasts and deregulated in osteosarcoma cells.
Resumo:
We carried out a yeast two-hybrid screen using a BRCA1 bait composed of amino acids 1 to 1142 and identified BRD7 as a novel binding partner of BRCA1. This interaction was confirmed by coimmunoprecipitation of endogenous BRCA1 and BRD7 in T47D and HEK-293 cells. BRD7 is a bromodomain containing protein, which is a subunit of PBAF-specific Swi/Snf chromatin remodeling complexes. To determine the functional consequences of the BRCA1-BRD7 interaction, we investigated the role of BRD7 in BRCA1-dependent transcription using microarray-based expression profiling. We found that a variety of targets were coordinately regulated by BRCA1 and BRD7, such as estrogen receptor alpha (ERalpha). Depletion of BRD7 or BRCA1 in either T47D or MCF7 cells resulted in loss of expression of ERalpha at both the mRNA and protein level, and this loss of ERalpha was reflected in resistance to the antiestrogen drug fulvestrant. We show that BRD7 is present, along with BRCA1 and Oct-1, on the ESR1 promoter (the gene which encodes ERalpha). Depletion of BRD7 prevented the recruitment of BRCA1 and Oct-1 to the ESR1 promoter; however, it had no effect on the recruitment of the other Swi/Snf subunits BRG1, BAF155, and BAF57 or on RNA polymerase II recruitment. These results support a model whereby the regulation of ERalpha transcription by BRD7 is mediated by its recruitment of BRCA1 and Oct-1 to the ESR1 promoter.
Resumo:
The transcription factors Pea3, Erm, and Er81 can promote cancer initiation and progression in various types of solid tumors. However, their role in esophageal squamous cell carcinoma (ESCC) has not been elucidated. In this study, we found that the expression levels of Pea3 and Erm, but not that of Er81, were significantly higher in ESCC compared with nontumor esophageal epithelium. A high level of Pea3 expression was significantly correlated with a shorter overall survival in a cohort of 81 patients with ESCC and the subgroup with N1 stage tumor (Wilcoxon-Gehan test, P = 0.016 and P = 0.001, respectively). Pea3 was overexpressed in seven ESCC cell lines compared with two immortalized esophageal cell lines. Pea3 knockdown reduced cell proliferation and suppressed nonadherent growth, migration, and invasion in ESCC cells in vitro. In addition, Pea3 knockdown in ESCC cells resulted in a down-regulation of phospho-Akt and matrix metalloproteinase 13, whereas a significant positive correlation in the expression levels was observed between Pea3 and phospho-Akt (r = 0.281, P
Resumo:
Transcription termination is emerging as an important component of gene regulation necessary to partition the genome and minimize transcriptional interference. We have discovered a role for the Arabidopsis RNA silencing enzyme DICER-LIKE 4 (DCL4) in transcription termination of an endogenous Arabidopsis gene, FCA. DCL4 directly associates with FCA chromatin in the 3' region and promotes cleavage of the nascent transcript in a domain downstream of the canonical polyA site. In a dcl4 mutant, the resulting transcriptional read-through triggers an RNA interference–mediated gene silencing of a transgene containing the same 3' region. We conclude that DCL4 promotes transcription termination of the Arabidopsis FCA gene, reducing the amount of aberrant RNA produced from the locus.
Resumo:
A novel assay for the pan-serotypic detection of foot-and-mouth disease virus (FMDV) was designed using a 5' conjugated minor groove binder (MGB) probe real-time RT-PCR system. This assay targets the 3D region of the FMDV genome and is capable of detecting 20 copies of a transcribed RNA standard. The linear range of the test was eight logs from 2 x 10(1) to 2 x 10(8) copies and amplification time was approximately 2 h. Using a panel of 83 RNA samples from representative FMDV isolates, the diagnostic sensitivity of this test was shown to be equivalent to a TaqMan real-time RT-PCR that targets the 5' untranslated region of FMDV. Furthermore, the assay does not detect viruses causing similar clinical diseases in pigs such as swine vesicular disease virus and vesicular stomatitis virus, nor does it detect marine caliciviruses causing vesicular exanthema. The development of this assay provides a useful tool for the differential diagnosis of FMD, potentially for use in statutory or emergency testing programmes, or for detection of FMDV RNA in research applications. (C) 2011 Elsevier B.V. All rights reserved.