56 resultados para 13
Resumo:
Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.
Resumo:
Relative strengths of surface interaction for individual carbon atoms in acyclic and cyclic hydrocarbons adsorbed on alumina surfaces are determined using chemically resolved 13C nuclear magnetic resonance (NMR) T1 relaxation times. The ratio of relaxation times for the adsorbed atoms T1,ads to the bulk liquid relaxation time T1,bulk provides an indication of the mobility of the atom. Hence a low T1,ads/T1,bulk ratio indicates a stronger surface interaction. The carbon atoms associated with unsaturated bonds in the molecules are seen to exhibit a larger reduction in T1 on adsorption relative to the aliphatic carbons, consistent with adsorption occurring through the carbon-carbon multiple bonds. The relaxation data are interpreted in terms of proximity of individual carbon atoms to the alumina surface and adsorption conformations are inferred. Furthermore, variations of interaction strength and molecular configuration have been explored as a function of adsorbate coverage, temperature, surface pre-treatment, and in the presence of co-adsorbates. This relaxation time analysis is appropriate for studying the behaviour of hydrocarbons adsorbed on a wide range of catalyst support and supported-metal catalyst surfaces, and offers the potential to explore such systems under realistic operating conditions when multiple chemical components are present at the surface.
Resumo:
Secondary or late graft failure has been defined as the development of inadequate marrow function after initial engraftment has been achieved. We describe a case of profound marrow aplasia occurring 13 years after sibling allogeneic bone marrow transplantation for chronic myeloid leukaemia (CML) in first chronic phase. Although the patient remained a complete donor chimera, thereby suggesting that an unselected infusion of donor peripheral blood stem cells (PBSC) or bone marrow might be indicated, the newly acquired aplasia was thought to be immune in aetiology and some immunosuppression was therefore considered appropriate. Rapid haematological recovery was achieved after the infusion of unselected PBSC from the original donor following conditioning with anti-thymocyte globulin (ATG).
Resumo:
Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500 m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.