537 resultados para ionic surfactant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of carbon dioxide to four superbase ionic liquids, [P3333][Benzim], [P3333][124Triz], [P3333][123Triz] and [P3333][Bentriz] was studied using a molecular DFT approach involving anions alone and individual ion pairs. Intermolecular bonding within the individual ion pairs is characterised by a number of weak hydrogen bonds, with the superbase anion geometrically arranged so as to maximize interactions between the heterocyclic N atoms and the cation. The pairing energies show no correlation to the observed CO2 adsorption capacity. Addition of CO2 to the anion alone clearly resulted in the formation of a covalently-bound carbamate function with the strength of binding correlated to experimental capacity. In the ion pair however the cation significantly alters the nature of the bonding such that the overall cohesive energy is reduced. Formation of a strong carbamate function occurs at the expense of weakening the interaction between anion and cation. In the more weakly absorbing ion pairs which contain [123Triz]- and [Bentriz]-, the carbamate-functionalised systems are very close in energy to adducts in which CO2 is more weakly bound, suggesting an equilibrium between the chemi- and physisorbed CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. Ionic liquid gels provide the ability to build functionality at every level, the solid component, the ionic liquid, and any incorporated active functional agents. This allows materials to be custom designed for a vast assortment of applications. This diverse class of materials has the potential to yield functional materials for green and sustainable chemistry, energy, electronics, medicine, food, cosmetics, and more. The discussion of the development of ionic liquid gel materials for applications in green and sustainable chemistry centres on uses of ionic liquid gels in catalysis and energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Ultimately, it is this negative charge which gives rise to the barrier for ion transport at the grain boundary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the catalytic hydrogenation of benzene to cyclohexane, the separation of unreacted benzene from the product stream is inevitable and essential for an economically viable process. In order to evaluate the separation efficiency of ionic liquids (ILs) as a solvent in this extraction processes, the ternary (liquid + liquid) equilibrium of 1-alkyl-3-methylimidazolium hexafluorophosphate, [Cnmim][PF6] (n = 4, 5, 6), with benzene and cyclohexane was studied at T = 298.15 K and atmospheric pressure. The reliability of the experimentally determined tie-line data was confirmed by applying the Othmer–Tobias equation. The solute distribution coefficient and solvent selectivity for the systems studied were calculated and compared with literature data for other ILs and sulfolane. It turns out that the benzene distribution coefficient increases and solvent selectivity decreases as the length of the cation alkyl chain grows, and the ionic liquids [Cnmim][PF6] proved to be promising solvents for benzene–cyclohexane extractive separation. Finally, an NRTL model was applied to correlate and fit the experimental LLE data for the ternary systems studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Separation of benzene and cyclohexane is one of the most important and difficult processes in the petrochemical industry, especially for low benzene concentration. In this work, three ionic liquids (ILs), [Bmim][BF 4], [Bpy][BF 4], and [Bmim][SCN], were investigated as the solvent in the extraction of benzene from cyclohexane. The corresponding ternary liquid-liquid equilibria (LLE) were experimentally determined at T = 298.15 K and atmospheric pressure. The LLE data were correlated with the nonrandom two-liquid model, and the parameters were fitted. The separation capabilities of the ILs were evaluated in terms of the benzene distribution coefficient and solvent selectivity. The effect of the IL structure on the separation was explained based on a well-founded physical model, COSMO-RS. Finally, the extraction processes were defined, and the operation parameters were analyzed. It shows that the ILs studied are suitable solvents for the extractive separation of benzene and cyclohexane, and their separation efficiency can be generally ranked as [Bmim][BF 4] > [Bpy][BF 4] > [Bmim][SCN]. The extraction process for a feed with 15 mol % benzene was optimized. High product purity (cyclohexane 0.997) and high recovery efficiency (cyclohexane 96.9% and benzene 98.1%) can be reached. © 2012 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of liquid rare-earth chlorometallate complexes with alkyl-phosphonium cations, [P666 14]+, has been synthesised and characterised. EXAFS confirmed the predominant liquid-state speciation of the [LnCl6]3- of the series with Ln = Nd, Eu, Dy. The crystal structure of the shorter-alkyl-chain cation analogue [P4444]+ has been determined and exhibits a very large unit cell. The luminescence properties, with visible light emissions of the liquid Tb, Eu, Pr and Sm and the NIR emissions for the Nd and Er compounds were determined. The effective magnetic moments were measured and fitted for the Nd, Tb, Ho, Dy, Gd and Er samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbons are the main electrode materials used in supercapacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density capacity will improve their potential for commercial implementation.
In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for supercapacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electrochemical double layer (ECDL) capacitance and energy density.
The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte.
This perspective will provide an overview of the current state of the art research on supercapacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance supercapacitors for different applications including those requiring mechanical flexibility and biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first examples of ionic liquids based on borenium cations, [BCl2L](+), are reported. These compounds form highly Lewis acidic liquids under solvent-free conditions. Their acidity was quantified by determining the Gutmann acceptor number (AN). Extremely high ANs were recorded (up to AN=182, delta(31P)=120 ppm), demonstrating that these borenium ionic liquids are the strongest Lewis superacids reported to date, with the acidity enhanced by the ionic liquid environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility of monoethanolamine (MEA) in five superbase ionic liquids (ILs), namely the trihexyl-tetradecylphosphonium benzotriazolide ([P66614][Bentriz]), trihexyl-tetradecylphosphonium benzimidazolide ([P66614][Benzim]), trihexyl-tetradecylphosphonium 1,2,3-triazolide ([P66614][123Triz]), trihexyl-tetradecylphosphonium 1,2,4-triazolide ([P66614][124Triz]), and trihexyl-tetradecylphosphonium imidazolide ([P66614][Im]) was determined at 295.15 K using 1H NMR spectroscopy. The solubility of carbon dioxide (CO2) in equimolar (IL + MEA) mixtures was then studied experimentally using a gravimetric technique at 295.15 K and 0.1 MPa. The effect of MEA on the CO2 capture ability of these ILs was investigated together with the viscosity of these systems in the presence or absence of CO2 to evaluate their practical application in CO2 capture processes. The effect of the presence of MEA on the rate of CO2 uptake was also studied. The study showed that the MEA can enhance CO2 absorption over the ideal values in the case of [P66614][123Triz] and [P66614][Bentriz] while in the other systems the mixtures behave ideally. A comparison of the effect of MEA addition with the addition of water to these superbase ILs showed that similar trends were observed in each case for the individual ILs studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide were determined as a function of the alkyl chain length on the cation from 1-propyl- to 1-hexyl- from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally the speed of sound, density and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e. relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

Relevância:

20.00% 20.00%

Publicador: