80 resultados para ytterbium chloride
Resumo:
A novel UV dosimeter is described comprising a tetrazolium dye, neotetrazolium chloride (NTC), dissolved in a film of polymer, polyvinyl alcohol (PVA). The dosimeter is pale yellow/colourless in the absence of UV light, and turns red upon exposure to UV light. The spectral characteristics of a typical UV dosimeter film and the mechanism through which the colour change occurs are detailed. The NTC UV dosimeter films exhibit a response to UV light that is related to the intensity and duration of UV exposure, the level of dye present in the films and the thickness of the films themselves. The response of the dosimeter is temperature independent over the range 20-40 degrees C and, like most UV dosimeters, exhibits a cosine-like response dependence upon irradiance angle. The introduction of a layer of a UV-screening compound which slows the rate at which the dosimeter responds to UVR enables the dosimeter response to be tailored to different UV doses. The possible use of these novel dosimeters to measure solar UV exposure dose is discussed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Thin (50-500 nm) films of TiO2 may be deposited on glass substrates by the atmospheric pressure chemical vapor deposition (APCVD) reaction of TiCl4 with ethyl acetate at 400600 C. The TiO2 films are exclusively in the form of anatase, as established by Raman microscopy and glancing angle X-ray diffraction. X-ray photoelectron spectroscopy gave a 1:2 Ti:O ratio with Ti 2P(3/2) at 458.6 eV and O 1s is at 530.6 eV. The water droplet contact angle drops from 60degrees to
Resumo:
C-60 is more effective than graphite or diamond as a redox catalyst for the oxidation of chloride to chlorine by cerie ions.
Resumo:
A number of different carbon blacks are tested for activity as chlorine catalysts in the oxidation of chloride (2 mol dm-3 in 0.5 mol dm-3 H2SO4) to chlorine by Ce(IV) ions, that is,
Resumo:
A number of different, characterised, supported and unsupported oxides of Ru(IV) and Ir(IV) have been tested for activity as a chlorine catalyst in the oxidation of brine by Ce(IV) ions. All the different materials tested gave yields of chlorine of > 90% and first-order kinetics for the reduction of the Ce(IV) ions. The samples prepared by the Adams method were the most active of the materials tested and are typified by high surface areas and appreciable activities per unit area. The kinetics of the catalysed reduction of Ce(IV) ions by brine were studied in detail using an Ru(IV) oxide prepared by the Adams method and supported on TiO2 and the results were rationalised in terms of an electrochemical model in which the rate-determining step is the diffusion-controlled reduction of Ce(IV) ions. In support of this model the measured activation energies for the oxidation of brine by Ce(IV) ions, catalysed by either a supported or unsupported Adams catalyst, were both close (18-21 kJ mol-1) to that expected for a diffusion-controlled reaction (ca. 15 kJ mol-1).
OXIDATION OF CHLORIDE TO CHLORINE BY CERIUM(IV) IONS MEDIATED BY A MICROHETEROGENEOUS REDOX CATALYST
Resumo:
The presence of chloride ions is one of the primary factors causing the degradation of reinforced concrete structures. An investigation to monitor ingress of chlorides during a 24-week wetting and drying exposure regime to simulate conditions in which multiple-mode transport mechanisms are active was conducted on a variety of binders. Penetration was evaluated using free and total chloride profiles. Acid extraction of chlorides is quantitatively reliable and practical for assessing penetration. X-ray diffraction was used to determine the presence of bound chlorides and carbonation. The ability of the cement blends to resist chloride penetration was, from best to worst, ground granulated blast-furnace slag, microsilica, pulverised-fuel ash, Portland cement. The effect of carbonation on binding capability was observed and the relative quantity of chlorides also showed a correlation with the amount of chlorides bound in the form of Friedel’s salt.
Resumo:
BACKGROUND: Patients with castration-resistant prostate cancer (CRPC) and bone metastases have an unmet clinical need for effective treatments that improve quality of life and survival with a favorable safety profile. OBJECTIVE: To prospectively evaluate the efficacy and safety of three different doses of radium chloride (Ra 223) in patients with CRPC and bone metastases. DESIGN, SETTING, AND PARTICIPANTS: In this phase 2 double-blind multicenter study, 122 patients were randomized to receive three injections of Ra 223 at 6-wk intervals, at doses of 25 kBq/kg (n=41), 50 kBq/kg (n=39), or 80 kBq/kg (n=42). The study compared the proportion of patients in each dose group who had a confirmed decrease of =50% in baseline prostate-specific antigen (PSA) levels. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Efficacy was evaluated using blood samples to measure PSA and other tumor markers, recorded skeletal-related events, and pain assessments. Safety was evaluated using adverse events (AEs), physical examination, and clinical laboratory tests. The Jonckheere-Terpstra test assessed trends between groups. RESULTS AND LIMITATIONS: The study met its primary end point with a statistically significant dose-response relationship in confirmed =50% PSA declines for no patients (0%) in the 25-kBq/kg dose group, two patients (6%) in the 50-kBq/kg dose group, and five patients (13%) in the 80-kBq/kg dose group (p=0.0297). A =50% decrease in bone alkaline phosphatase levels was identified in six patients (16%), 24 patients (67%), and 25 patients (66%) in the 25-, 50-, and 80-kBq/kg dose groups, respectively (p