66 resultados para symbolic computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effects of amplitude and phase damping decoherence in d-dimensional one-way quantum computation. We focus our attention on low dimensions and elementary unidimensional cluster state resources. Our investigation shows how information transfer and entangling gate simulations are affected for d >= 2. To understand motivations for extending the one-way model to higher dimensions, we describe how basic qudit cluster states deteriorate under environmental noise of experimental interest. In order to protect quantum information from the environment, we consider encoding logical qubits into qudits and compare entangled pairs of linear qubit-cluster states to single qudit clusters of equal length and total dimension. A significant reduction in the performance of cluster state resources for d > 2 is found when Markovian-type decoherence models are present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classification of protein structures is an important and still outstanding problem. The purpose of this paper is threefold. First, we utilize a relation between the Tutte and homfly polynomial to show that the Alexander-Conway polynomial can be algorithmically computed for a given planar graph. Second, as special cases of planar graphs, we use polymer graphs of protein structures. More precisely, we use three building blocks of the three-dimensional protein structure-alpha-helix, antiparallel beta-sheet, and parallel beta-sheet-and calculate, for their corresponding polymer graphs, the Tutte polynomials analytically by providing recurrence equations for all three secondary structure elements. Third, we present numerical results comparing the results from our analytical calculations with the numerical results of our algorithm-not only to test consistency, but also to demonstrate that all assigned polynomials are unique labels of the secondary structure elements. This paves the way for an automatic classification of protein structures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local computation in join trees or acyclic hypertrees has been shown to be linked to a particular algebraic structure, called valuation algebra.There are many models of this algebraic structure ranging from probability theory to numerical analysis, relational databases and various classical and non-classical logics. It turns out that many interesting models of valuation algebras may be derived from semiring valued mappings. In this paper we study how valuation algebras are induced by semirings and how the structure of the valuation algebra is related to the algebraic structure of the semiring. In particular, c-semirings with idempotent multiplication induce idempotent valuation algebras and therefore permit particularly efficient architectures for local computation. Also important are semirings whose multiplicative semigroup is embedded in a union of groups. They induce valuation algebras with a partially defined division. For these valuation algebras, the well-known architectures for Bayesian networks apply. We also extend the general computational framework to allow derivation of bounds and approximations, for when exact computation is not feasible.