50 resultados para support vector regression


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concentration of organic acids in anaerobic digesters is one of the most critical parameters for monitoring and advanced control of anaerobic digestion processes. Thus, a reliable online-measurement system is absolutely necessary. A novel approach to obtaining these measurements indirectly and online using UV/vis spectroscopic probes, in conjunction with powerful pattern recognition methods, is presented in this paper. An UV/vis spectroscopic probe from S::CAN is used in combination with a custom-built dilution system to monitor the absorption of fully fermented sludge at a spectrum from 200 to 750 nm. Advanced pattern recognition methods are then used to map the non-linear relationship between measured absorption spectra to laboratory measurements of organic acid concentrations. Linear discriminant analysis, generalized discriminant analysis (GerDA), support vector machines (SVM), relevance vector machines, random forest and neural networks are investigated for this purpose and their performance compared. To validate the approach, online measurements have been taken at a full-scale 1.3-MW industrial biogas plant. Results show that whereas some of the methods considered do not yield satisfactory results, accurate prediction of organic acid concentration ranges can be obtained with both GerDA and SVM-based classifiers, with classification rates in excess of 87% achieved on test data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N-gram analysis is an approach that investigates the structure of a program using bytes, characters, or text strings. A key issue with N-gram analysis is feature selection amidst the explosion of features that occurs when N is increased. The experiments within this paper represent programs as operational code (opcode) density histograms gained through dynamic analysis. A support vector machine is used to create a reference model, which is used to evaluate two methods of feature reduction, which are 'area of intersect' and 'subspace analysis using eigenvectors.' The findings show that the relationships between features are complex and simple statistics filtering approaches do not provide a viable approach. However, eigenvector subspace analysis produces a suitable filter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The global increase in the penetration of renewable energy is pushing electrical power systems into uncharted territory, especially in terms of transient and dynamic stability. In particular, the greater penetration of wind generation in European power networks is, at times, displacing a significant capacity of conventional synchronous generation with fixed-speed induction generation and now more commonly, doubly-fed induction generators. The impact of such changes in the generation mix requires careful monitoring to assess the impact on transient and dynamic stability. This paper presents a measurement based method for the early detection of power system oscillations, with attention to mode damping, in order to raise alarms and develop strategies to actively improve power system dynamic stability and security. A method is developed based on wavelet transform and support vector data description (SVDD) to detect oscillation modes in wind farm output power, which may excite dynamic instabilities in the wider system. The wavelet transform is used as a filter to identify oscillations in different frequency bands, while SVDD is used to extract dominant features from different scales and generate an assessment boundary according to the extracted features. Poorly damped oscillations of a large magnitude or that are resonant can be alarmed to the system operator, to reduce the risk of system instability. Method evaluation is exemplified used real data from a chosen wind farm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking. Unstructured environments also affect the automatic colony screening. This paper presents a novel approach for adaptive colony segmentation in unstructured environments by treating the detected peaks of intensity histograms as a morphological feature of images. In order to avoid disturbing peaks, an entropy based mean shift filter is introduced to smooth images as a preprocessing step. The relevance and importance of these features can be determined in an improved support vector machine classifier using unascertained least square estimation. Experimental results show that the proposed unascertained least square support vector machine (ULSSVM) has better recognition accuracy than the other state-of-the-art techniques, and its training process takes less time than most of the traditional approaches presented in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of learning from imbalanced data is of critical importance in a large number of application domains and can be a bottleneck in the performance of various conventional learning methods that assume the data distribution to be balanced. The class imbalance problem corresponds to dealing with the situation where one class massively outnumbers the other. The imbalance between majority and minority would lead machine learning to be biased and produce unreliable outcomes if the imbalanced data is used directly. There has been increasing interest in this research area and a number of algorithms have been developed. However, independent evaluation of the algorithms is limited. This paper aims at evaluating the performance of five representative data sampling methods namely SMOTE, ADASYN, BorderlineSMOTE, SMOTETomek and RUSBoost that deal with class imbalance problems. A comparative study is conducted and the performance of each method is critically analysed in terms of assessment metrics. © 2013 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose a new learning approach to Web data annotation, where a support vector machine-based multiclass classifier is trained to assign labels to data items. For data record extraction, a data section re-segmentation algorithm based on visual and content features is introduced to improve the performance of Web data record extraction. We have implemented the proposed approach and tested it with a large set of Web query result pages in different domains. Our experimental results show that our proposed approach is highly effective and efficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N-gram analysis is an approach that investigates the structure of a program using bytes, characters or text strings. This research uses dynamic analysis to investigate malware detection using a classification approach based on N-gram analysis. A key issue with dynamic analysis is the length of time a program has to be run to ensure a correct classification. The motivation for this research is to find the optimum subset of operational codes (opcodes) that make the best indicators of malware and to determine how long a program has to be monitored to ensure an accurate support vector machine (SVM) classification of benign and malicious software. The experiments within this study represent programs as opcode density histograms gained through dynamic analysis for different program run periods. A SVM is used as the program classifier to determine the ability of different program run lengths to correctly determine the presence of malicious software. The findings show that malware can be detected with different program run lengths using a small number of opcodes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N-gram analysis is an approach that investigates the structure of a program using bytes, characters or text strings. This research uses dynamic analysis to investigate malware detection using a classification approach based on N-gram analysis. The motivation for this research is to find a subset of Ngram features that makes a robust indicator of malware. The experiments within this paper represent programs as N-gram density histograms, gained through dynamic analysis. A Support Vector Machine (SVM) is used as the program classifier to determine the ability of N-grams to correctly determine the presence of malicious software. The preliminary findings show that an N-gram size N=3 and N=4 present the best avenues for further analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficient identification and follow-up of astronomical transients is hindered by the need for humans to manually select promising candidates from data streams that contain many false positives. These artefacts arise in the difference images that are produced by most major ground-based time-domain surveys with large format CCD cameras. This dependence on humans to reject bogus detections is unsustainable for next generation all-sky surveys and significant effort is now being invested to solve the problem computationally. In this paper, we explore a simple machine learning approach to real-bogus classification by constructing a training set from the image data of similar to 32 000 real astrophysical transients and bogus detections from the Pan-STARRS1 Medium Deep Survey. We derive our feature representation from the pixel intensity values of a 20 x 20 pixel stamp around the centre of the candidates. This differs from previous work in that it works directly on the pixels rather than catalogued domain knowledge for feature design or selection. Three machine learning algorithms are trained (artificial neural networks, support vector machines and random forests) and their performances are tested on a held-out subset of 25 per cent of the training data. We find the best results from the random forest classifier and demonstrate that by accepting a false positive rate of 1 per cent, the classifier initially suggests a missed detection rate of around 10 per cent. However, we also find that a combination of bright star variability, nuclear transients and uncertainty in human labelling means that our best estimate of the missed detection rate is approximately 6 per cent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The existence of loose particles left inside the sealed electronic devices is one of the main factors affecting the reliability of the whole system. It is important to identify the particle material for analyzing their source. The conventional material identification algorithms mainly rely on time, frequency and wavelet domain features. However, these features are usually overlapped and redundant, resulting in unsatisfactory material identification accuracy. The main objective of this paper is to improve the accuracy of material identification. First, the principal component analysis (PCA) is employed to reselect the nine features extracted from time and frequency domains, leading to six less correlated principal components. And then the reselected principal components are used for material identification using a support vector machine (SVM). Finally, the experimental results show that this new method can effectively distinguish the type of materials including wire, aluminum and tin particles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a novel and effective lip-based biometric identification approach with the Discrete Hidden Markov Model Kernel (DHMMK) is developed. Lips are described by shape features (both geometrical and sequential) on two different grid layouts: rectangular and polar. These features are then specifically modeled by a DHMMK, and learnt by a support vector machine classifier. Our experiments are carried out in a ten-fold cross validation fashion on three different datasets, GPDS-ULPGC Face Dataset, PIE Face Dataset and RaFD Face Dataset. Results show that our approach has achieved an average classification accuracy of 99.8%, 97.13%, and 98.10%, using only two training images per class, on these three datasets, respectively. Our comparative studies further show that the DHMMK achieved a 53% improvement against the baseline HMM approach. The comparative ROC curves also confirm the efficacy of the proposed lip contour based biometrics learned by DHMMK. We also show that the performance of linear and RBF SVM is comparable under the frame work of DHMMK.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite pattern recognition methods for human behavioral analysis has flourished in the last decade, animal behavioral analysis has been almost neglected. Those few approaches are mostly focused on preserving livestock economic value while attention on the welfare of companion animals, like dogs, is now emerging as a social need. In this work, following the analogy with human behavior recognition, we propose a system for recognizing body parts of dogs kept in pens. We decide to adopt both 2D and 3D features in order to obtain a rich description of the dog model. Images are acquired using the Microsoft Kinect to capture the depth map images of the dog. Upon depth maps a Structural Support Vector Machine (SSVM) is employed to identify the body parts using both 3D features and 2D images. The proposal relies on a kernelized discriminative structural classificator specifically tailored for dogs independently from the size and breed. The classification is performed in an online fashion using the LaRank optimization technique to obtaining real time performances. Promising results have emerged during the experimental evaluation carried out at a dog shelter, managed by IZSAM, in Teramo, Italy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new wrapper feature selection algorithm for human detection. This algorithm is a hybrid featureselection approach combining the benefits of filter and wrapper methods. It allows the selection of an optimalfeature vector that well represents the shapes of the subjects in the images. In detail, the proposed featureselection algorithm adopts the k-fold subsampling and sequential backward elimination approach, while thestandard linear support vector machine (SVM) is used as the classifier for human detection. We apply theproposed algorithm to the publicly accessible INRIA and ETH pedestrian full image datasets with the PASCALVOC evaluation criteria. Compared to other state of the arts algorithms, our feature selection based approachcan improve the detection speed of the SVM classifier by over 50% with up to 2% better detection accuracy.Our algorithm also outperforms the equivalent systems introduced in the deformable part model approach witharound 9% improvement in the detection accuracy

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research presented, investigates the optimal set of operational codes (opcodes) that create a robust indicator of malicious software (malware) and also determines a program’s execution duration for accurate classification of benign and malicious software. The features extracted from the dataset are opcode density histograms, extracted during the program execution. The classifier used is a support vector machine and is configured to select those features to produce the optimal classification of malware over different program run lengths. The findings demonstrate that malware can be detected using dynamic analysis with relatively few opcodes.