69 resultados para porous zirconium methylphosphonate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins and humic acids are common constituents of waste water. Latex colloids (colloids) acted as surrogates for microorganisms in multiple pulse dynamic column experiments (MPEs) that permitted colloid mobility to be quantified before and after the injection of either BSA (a protein), or Suwannee River humic acid (SRHA).
At low OM coverage colloid breakthrough curves demonstrated both BSA and SRHA reduced colloid deposition rates, but did not affect colloid irreversible deposition mechanisms. By contrast, high levels of SRHA surface coverage not only further reduced the matrix’s ability to attenuate colloids, but also resulted in reversible adsorption of a significant fraction of colloids deposited. Modelling of colloid responses using random sequential adsorption modelling suggested that 1 microgram of SRHA had the same effect as the deposition of 5.90±0.14 x109 colloids; the model suggested that adsorption of the same mass of BSA was equivalent to the deposition of between 7.1x108 and 2.3x109 colloids.
Colloid responses in MPEs where BSA coverage of colloid deposition sites approached saturation demonstrated the sand matrix remained capable of adsorbing colloids. However, in contrast to responses observed in MPEs at low surface coverage, continued colloid injection showed that the sand’s attenuation capacity increased with time, i.e. colloid concentrations declined as more were deposited (filter ripening).
Importance: Study results highlight the contrasting responses that may arise due to the interactions between colloids and OM in porous media. Results not only underscore that colloids can interact differently with various forms of deposited OM, but also that a single type of OM may generate dramatically different responses depending on the degree of surface coverage. The MPE method provides a means of quantifying the influence of OM on microorganism mobility in porous media such as filter beds, which may be used for either drinking water treatment or waste water treatment. In the wider environment study findings have potential to allow more confident predictions of the mobility of sewage derived pathogens discharging to groundwater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single oxides of Ti and Zr incorporated SBA-15 were prepared and characterized by N-2 adsorption, NMR, and XPS techniques. Si-29 MAS NMR results suggest the formation of Si-O-X linkages (X: Ti or Zr) by an increase in the ratio of Q(3)/Q(4) in the presence of Ti or Zr. XPS analysis of Ti-SBA-15 catalysts indicate the presence of Ti-O-Si bonds in addition to Ti-O-Ti and Si-O-Si bonds, supporting the NMR evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humic acid and protein are two major organic matter types encountered in natural and polluted environment, respectively. This study employed Triple Pulse Experiments (TPEs) to investigate and compare the influence of Suwannee River Humic Acid (SRHA) (model humic acid) and Bovine Serum Albumin (BSA) (model protein) on colloid deposition in a column packed with saturated iron oxide-coated quartz sand. Study results suggest that adsorbed SRHA may inhibit colloid deposition by occupying colloid sites on the porous medium. Conversely, BSA may promote colloid deposition by a 'filter ripening' mechanism. This study provides insight to understand the complex behavior of colloids in organic matter-presented aquifers and sand filters. © (2012) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal organic frameworks (MOFs) are among the most exciting materials discovered recently, attracting particular attention for their gas-adsorption and -storage properties. Certain MOFs show considerable structural flexibility in response to various stimuli. Although there are several examples of 'breathing' MOFs, in which structural changes occur without any bond breaking, examples of transformations in which several bonds are broken and made are much rarer. In this paper we demonstrate how a flexible MOF, Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O, can be synthesized by careful choice of the organic linker ligand. The flexibility can be controlled by addition of a supplementary coordinating molecule, which increases the thermal stability of the solid sufficiently for direct imaging with electron microscopy to be possible. We also demonstrate that the MOF shows unprecedented low-pressure selectivity towards nitric oxide through a coordination-driven gating mechanism. The chemical control over these behaviours offers new possibilities for the synthesis of MOFs with unusual and potentially exploitable properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two porous metal organic frameworks (MOFs), [M-2(C8H2O6)(H2O)(2)] center dot 8H(2)O (M = Co, Ni), perform exceptionally well for the adsorption, storage, and water-triggered delivery of the biologically important gas nitric oxide. Adsorption and powder X-ray diffraction studies indicate that each coordinatively unsaturated metal atom in the structure coordinates to one NO molecule. All of the stored gas is available for delivery even after the material has been stored for several months. The combination of extremely high adsorption capacity (similar to 7 mmol of NO/g of MOF) and good storage stability is ideal for the preparation of NO storage solids. However, most important is that the entire reservoir of stored gas is recoverable on contact with a simple trigger (moisture). The activity of the NO storage materials is proved in myography experiments showing that the NO-releasing MOFs cause relaxation of porcine arterial tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous layered hybrid materials have been prepared by the reaction of organo-bisphosphonate ligands, 4-(4'-phosphonophenoxy)phenylphosphonic, 4,4'-biphenylenbisphosphonic and phenylphosphonic acids, with metal(IV) cations (Zr and Sn). Crystalline Zr(IV) and Sn(IV) layered bisphosphonates were also prepared, which were non-porous. The amorphous M(IV) bisphosphonates showed variable compositions and textural properties ranging from mainly mesoporous to highly microporous solids with BET surface areas varying from 300 to 480 m(2) g(-1), micropore volumes ranging 0.10-0.20 cm(3)/g, and narrow porous size distributions for some materials. N-2 isotherms suggest that Sn(IV) derivatives show a comparatively higher micropore contribution than the Zr(IV) analogous at least for the ether-bisphosphonate hybrids. Sn(IV) bisphosphonates exhibit high microporosities without the need of using harmful DMSO as solvent. If ether-bisphosphonic acid is partially replaced by less expensive phenylphosphonic ligand, porous products are also obtained. P-31 and F-17 MAS NMR and XPS data revealed the presence of hydrogen-phosphonate groups and small (F-, Cl- and OH-) anions, which act as spacer ligands within the inorganic layers, in these hybrid materials. The complexity of the inorganic layers is higher for the Sn(IV) bisphosphonates likely due to the larger amount of small bridging anions including fluorides. It is suggested that the presence of these small inorganic ligands may be a key factor influencing both, the interaction of the inorganic layer with the bisphosphonate groups, which bridge the inorganic layers, and the generation of internal voids within a given inorganic layer. Preliminary studies of gases adsorption (H-2 and NO) have been carried out for selected Sn(IV) bisphosphonates. The H-2 adsorption capacity at 77 K and 1 bar was low, 0.26 wt%, but the NO adsorption capacity at similar to 1 bar and 298 K was relatively high, 4.2 wt%. Moreover, the hysteresis in the NO isotherms is indicative of partial strong irreversible adsorption of NO. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rigid organic iminospherand cages are rendered meltable by multiple alkylation; below their melting points they can take the form of permanently porous crystals, crystals unstable to desolvation or nonporous glassy solids depending on chain length and branching; melting points as low as 50 degrees C are observed and a fully Newtonian liquid phase is obtained above 80 degrees C. Thin glassy fibres can be drawn out from a molten phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium samples were manufactured using the 3D printing and sintering method in order to determine the effects of final sintering temperature on morphology and mechanical properties. Cylindrical samples were printed and split into groups according to a final sintering temperature (FST). Irregular geometry samples were also printed and split into groups according to their FST. The cylindrical samples were used to determine part shrinkage, in compressive tests to provide stress-strain data, in microCT scans to provide internal morphology data and for optical microscopy to determine surface morphology. All of the samples were used in microhardness testing to establish the hardness. Below 1100 C FST, shrinkage was in the region of 20% but increased to approximately 30% by a FST of 1300 C. Porosity varied from a maximum of approximately 65% at the surface to the region of 30% internally. Between 97 and 99% of the internal porosity is interconnected. Average pore size varied between 24 µm at the surface and 19 µm internally. Sample hardness increased to in excess of 300 HV0.05 with increasing FST while samples with an FST of below 1250 C produced an elastic-brittle stress/strain curve and samples above this displayed elastic-plastic behaviour. Yield strength increased significantly through the range of sintering temperatures while the Young's modulus remained fairly consistent. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low cost supercritical CO foaming rig with a novel design has been used to prepare fully interconnected and highly porous biodegradable scaffolds with controllable pore size and structure that can promote cancellous bone regeneration. Porous polymer scaffolds have been produced by plasticising the polymer with high pressure CO and by the formation of a porous structure following the escape of CO from the polymer. Although, control over pore size and structure has been previously reported as difficult with this process, the current study shows that control is possible. The effects of processing parameters such as CO saturation pressure, time and temperature and depressurisation rate on the morphological properties, namely porosity, pore interconnectivity, pore size and wall thickness- of the scaffolds have been investigated. Poly(d,l)lactic acid was used as the biodegradable polymer. The surfaces and internal morphologies of the poly(d,l)lactic acid scaffolds were examined using optical microscope and micro computed tomography. Preosteoblast human bone cells were seeded on the porous scaffolds in vitro to assess cell attachment and viability. The scaffolds showed a good support for cell attachment, and maintained cell viability throughout 7 days in culture. This study demonstrated that the morphology of the porous structure can be controlled by varying the foaming conditions, allowing the porous scaffolds to be used in various tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general method to prepare organic-inorganic hybrid aerogels has been presented. A series of organic-inorganic hybrid aerogels were successfully produced from 3d trivalent transition metals (Cr3+, Fe3+) and bridging carboxylic acids. Gelation of the Cr(III) gels was achieved by heating the precursor solution to temperatures above 80 degrees C, which is in sharp contrast to usual supramolecular gels. Among a range of ligands used, highly porous aerogels could be prepared from rigid carboxylate, e.g. 1,4-benzenedicarboxylate and 1,3,5-benzenetricarboxylate. The porous aerogels can be described as a coherent, rigid spongy network of continuous nanometre-sized particles, which is significantly different from the usual fibrous network of supramolecular gels. The aerogels have tunable porous structures with micro-and mesoporosity depending on their reactant concentrations. Their surface areas, pore volumes, and average pore sizes were analysed by using nitrogen sorption, and the accessibility of the pores to bulky molecules was also evaluated. It represents a strategy to prepare hybrid materials with large porosity utilising structurally simple building blocks as precursors.