60 resultados para non-linear regression
Resumo:
A simple non-linear global-local finite element methodology is presented. A global coarse model, using 2-D shell elements, is solved non-linearly and the displacements and rotations around a region of interest are applied, as displacement boundary conditions, to a refined local 3-D model using Kirchhoff plate assumptions. The global elements' shape functions are used to interpolate between nodes. The local model is then solved non-linearly with an incremental scheme independent of that used for the global model.
Resumo:
We consider two interlinked non-linear interactions occurring simultaneously in a single chi((2)) crystal. Classical and quantum working regimes are considered and their peculiar properties analysed. In particular, we describe an experiment, realized in the classical regime, that verifies the holographic nature of the process, and predict, for the quantum regime, the generation of a fully inseparable tripartite Gaussian state of light that can be used to support a general 1--> 2 continuous variable telecloning protocol.
Resumo:
Linear wave theory models are commonly applied to predict the performance of bottom-hinged oscillating wave surge converters (OWSC) in operational sea states. To account for non-linear effects, the additional input of coefficients not included in the model itself becomes necessary. In ocean engineering it is
common practice to obtain damping coefficients of floating structures from free decay tests. This paper presents results obtained from experimental tank tests and numerical computational fluid dynamics simulations of OWSC’s. Agreement between numerical and experimental methods is found to be very good, with CFD providing more data points at small amplitude rotations.
Analysis of the obtained data reveals that linear quadratic-damping, as commonly used in time domain models, is not able to accurately model the occurring damping over the whole regime of rotation amplitudes. The authors
conclude that a hyperbolic function is most suitable to express the instantaneous damping ratio over the rotation amplitude and would be the best choice to be used in coefficient based time domain models.
Resumo:
In the last decade, many side channel attacks have been published in academic literature detailing how to efficiently extract secret keys by mounting various attacks, such as differential or correlation power analysis, on cryptosystems. Among the most efficient and widely utilized leakage models involved in these attacks are the Hamming weight and distance models which give a simple, yet effective, approximation of the power consumption for many real-world systems. These leakage models reflect the number of bits switching, which is assumed proportional to the power consumption. However, the actual power consumption changing in the circuits is unlikely to be directly of that form. We, therefore, propose a non-linear leakage model by mapping the existing leakage model via a transform function, by which the changing power consumption is depicted more precisely, hence the attack efficiency can be improved considerably. This has the advantage of utilising a non-linear power model while retaining the simplicity of the Hamming weight or distance models. A modified attack architecture is then suggested to yield the correct key efficiently in practice. Finally, an empirical comparison of the attack results is presented.
Resumo:
Surface reaction methodology was implicated in the optimization of hexavalent chromium removal onto lignin with respect to the process parameters. The influence of altering the conditions for removal of chromium(VI), for instance; solution pH, ionic strength, initial concentration, the dose of biosorbent, presence of other metals (Zn and Cu), presence of salts and biosorption-desorption studies, were investigated. It was found that the biosorption capacity of lignin depends on solution pH, with a maximum biosorption capacity for chromium at pH 2. Experimental equilibrium data were fitted to five different isotherm models by non-linear regression method, however, the biosorption equilibrium data were well interpreted by the Freundlich isotherm. The maximum biosorption capacities (q(max)) obtained using Dubinin-Radushkevich and Khan isotherms for Cr(VI) biosorption are 31.6 and 29.1 mg/g. respectively. Biosorption showed pseudo second order rate kinetics at different initial concentrations of Cr(VI). The intraparticle diffusion study indicated that film diffusion may be involved in the current study. The percentage removal of chromium on lignin decreased significantly in the presence of NaHCO3 and K2P2O7 salts. Desorption data revealed that nearly 70% of the Cr(VI) adsorbed on lignin could be desorbed using 0.1 M NaOH. It was evident that the biosorption mechanism involves the attraction of both hexavalent chromium (anionic) and trivalent chromium (cationic) onto the surface of lignin. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of solution pH, initial concentration and contact time onto olive stone (OS) biomass has been investigated. The main objectives of the current study are to: (i) study the chemistry and the mechanism of ARS and MB biosorption onto olive stone and the type of OS–ARS, MB interactions occurring, (ii) study the biosorption equilibrium and kinetic experimental data required for the design and operation of column reactors. Equilibrium biosorption isotherms and kinetics were also examined. Experimental equilibrium data were fitted to four different isotherms by non-linear regression method, however, the biosorption experimental data for ARS and MB dyes were well interpreted by the Temkin and Langmuir isotherms, respectively. The maximum monolayer adsorption capacity for ARS and MB dyes were 109.0 and 102.6 mg/g, respectively. The kinetic data of the two dyes could be better described by the pseudo second-order model. The data showed that olive stone can be effectively used for removing dyes from wastewater.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Bridge construction responds to the need for environmentally friendly design of motorways and facilitates the passage through sensitive natural areas and the bypassing of urban areas. However, according to numerous research studies, bridge construction presents substantial budget overruns. Therefore, it is necessary early in the planning process for the decision makers to have reliable estimates of the final cost based on previously constructed projects. At the same time, the current European financial crisis reduces the available capital for investments and financial institutions are even less willing to finance transportation infrastructure. Consequently, it is even more necessary today to estimate the budget of high-cost construction projects -such as road bridges- with reasonable accuracy, in order for the state funds to be invested with lower risk and the projects to be designed with the highest possible efficiency. In this paper, a Bill-of-Quantities (BoQ) estimation tool for road bridges is developed in order to support the decisions made at the preliminary planning and design stages of highways. Specifically, a Feed-Forward Artificial Neural Network (ANN) with a hidden layer of 10 neurons is trained to predict the superstructure material quantities (concrete, pre-stressed steel and reinforcing steel) using the width of the deck, the adjusted length of span or cantilever and the type of the bridge as input variables. The training dataset includes actual data from 68 recently constructed concrete motorway bridges in Greece. According to the relevant metrics, the developed model captures very well the complex interrelations in the dataset and demonstrates strong generalisation capability. Furthermore, it outperforms the linear regression models developed for the same dataset. Therefore, the proposed cost estimation model stands as a useful and reliable tool for the construction industry as it enables planners to reach informed decisions for technical and economic planning of concrete bridge projects from their early implementation stages.
Resumo:
One of the first attempts to develop a formal model of depth cue integration is to be found in Maloney and Landy's (1989) "human depth combination rule". They advocate that the combination of depth cues by the visual sysetem is best described by a weighted linear model. The present experiments tested whether the linear combination rule applies to the integration of texture and shading. As would be predicted by a linear combination rule, the weight assigned to the shading cue did vary as a function of its curvature value. However, the weight assigned to the texture cue varied systematically as a function of the curvature value of both cues. Here we descrive a non-linear model which provides a better fit to the data. Redescribing the stimuli in terms of depth rather than curvature reduced the goodness of fit for all models tested. These results support the hypothesis that the locus of cue integration is a curvature map, rather than a depth map. We conclude that the linear comination rule does not generalize to the integration of shading and texture, and that for these cues it is likely that integration occurs after the recovery of surface curvature.
Resumo:
Coloured effluents from textile industries are a problem in many rivers and waterways. Prediction of adsorption capacities of dyes by adsorbents is important in design considerations. The sorption of three basic dyes, namely Basic Blue 3, Basic Yellow 21 and Basic Red 22, onto peat is reported. Equilibrium sorption isotherms have been measured for the three single component systems. Equilibrium was achieved after twenty-one days. The experimental isotherm data were analysed using Langmuir, Freundlich, Redlich-Peterson, Temkin and Toth isotherm equations. A detailed error analysis has been undertaken to investigate the effect of using different error criteria for the determination of the single component isotherm parameters and hence obtain the best isotherm and isotherm parameters which describe the adsorption process. The linear transform model provided the highest R2 regression coefficient with the Redlich-Peterson model. The Redlich-Peterson model also yielded the best fit to experimental data for all three dyes using the non-linear error functions. An extended Langmuir model has been used to predict the isotherm data for the binary systems using the single component data. The correlation between theoretical and experimental data had only limited success due to competitive and interactive effects between the dyes and the dye-surface interactions.