111 resultados para neuronal differentiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki) are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation.
Results: We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis) that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation.
Conclusion: Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of genes expressed in preparasitic second-stage juveniles (J2) of plant-parasitic nematodes appear to be vulnerable to RNA interference (RNAi) in vitro by coupling double-stranded (ds)RNA soaking with the artificial stimulation of pharyngeal pumping. Also, there is mounting evidence that the in planta generation of nematode-specific double-stranded RNAs (dsRNAs) has real utility in the control of these pests. Although neuronally-expressed genes in Caenorhabditis elegans are commonly refractory to RNAi, we have discovered that neuronally-expressed genes in plant-parasitic nematodes are highly susceptible to RNAi and that silencing can be induced by simple soaking procedures without the need for pharyngeal stimulation. Since most front-line anthelmintics that are used for the control of nematode parasites of animals and humans act to disrupt neuromuscular coordination, we argue that intercellular signalling processes associated with neurons have much appeal as targets for transgenic plant-based control strategies for plant-parasitic nematodes. FMRFamide-like peptides (FLPs) are a large family of neuropeptides which are intimately associated with neuromuscular regulation, and our studies on flp gene function in plant-parasitic nematodes have revealed that their expression is central to coordinated locomotory activities. We propose that the high level of conservation in nervous systems across nematodes coupled with the RNAi-susceptibility of neuronally-expressed genes in plant-parasitic nematodes provides a valuable research tool which could be used to interrogate neuronal signalling processes in nematodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphometrics and DNA microsatellites were used to analyse the genetic structure of populations of the stingless bee M. beecheii from two extremes of its geographic range. The results showed that populations from Costa Rica and Yucatan exhibit substantial phenotypic and molecular differentiation. Bees from Yucatan were smaller and paler than those from Costa Rica. The value of multilocus F-ST = 0.280 (P <0.001) confirmed that there were significant molecular genetic differences between the two populations. Populations showed significant deviation from Hardy Weinberg equilibrium and the values of FIS (the inbreeding coefficient) were positive for Costa Rica = 0.416 and the Yucatan Peninsula = 0.193, indicating a lack of heterozygotes in both populations possibly due to inbreeding. The DNA sequence of 678 bp of the mitochondrial gene COI differed between populations by 1.2%. The results of this study should be considered in conservation programmes, particularly with regard to the movement of colonies between regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ureter primary explant technique, using porcine tissue sections was developed to study bystander effects under in vivo like conditions where dividing and differentiated cells are present. Targeted irradiations of ureter tissue fragments were performed with the Gray Cancer Institute charged particle microbeam at a single location (2 microm precision) with 10 3He2+ particles (5 MeV; LET 70 keV/microm). After irradiation the ureter tissue section was incubated for 7 days allowing explant outgrowth to be formed. Differentiation was estimated using antibodies to Uroplakin III, a specific marker of terminal urothelial differentiation. Even although only a single region of the tissue section was targeted, thousands of additional cells were found to undergo bystander-induced differentiation in the explant outgrowth. This resulted in an overall increase in the fraction of differentiated cells from 63.5+/-5.4% to 76.6+/-5.6%. These changes are much greater than that observed for the induction of damage in this model. One interpretation of these results is that in the tissue environment, differentiation is a much more significant response to targeted irradiation and potentially a protective mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential gene expression in two established initiation and promotion skin carcinogenesis models during promotion and tumor formation was determined by microarray technology with the purpose of distinguishing the genes more associated with neoplastic transformation from those linked with proliferation and differentiation. The first model utilized dimethylbenz[a]anthracene initiation and 12-O-tetradecanoylphorbol 13-acetate (TPA) promotion in the FVB/N mouse, and the second TPA promotion of the Tg.Ac mouse, which is endogenously initiated by virtue of an activated Ha-ras transgene. Comparison of gene expression profiles across the two models identified genes whose altered expression was associated with papilloma formation rather than TPA-induced proliferation and differentiation. DMBA suppressed TPA-induced differentiation which allowed identification of those genes associated more specifically with differentiation rather than proliferation. EASE (Expression Analysis Systemic Explorer) indicated a correlation between muscle-associated genes and skin differentiation, whereas genes involved with protein biosynthesis were strongly correlated with proliferation. For verification the altered expression of selected genes were confirmed by RT-PCR; Carbonic anhydrase 2, Thioredoxin 1 and Glutathione S-transferase omega 1 associated with papilloma formation and Enolase 3, Cystatin 6 and Filaggrin associated with TPA-induced proliferation and differentiation. In situ analysis located the papillomas Glutathione S-transferase omega 1 expression to the proliferating areas of the papillomas. Thus we have identified profiles of differential gene expression associated with the tumorigenesis and promotion stages for skin carcinogenesis in the mouse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemokine eotaxin/CCL11 is an important mediator of leukocyte migration, but its effect on inflammatory cytokine signaling has not been explored. In this study, we find that CCL11 induces suppressor of cytokine signaling (SOCS) 1 and SOCS3 expression in murine macrophages, human monocytes, and dendritic cells (DCs). We also discover that CCL11 inhibits GM-CSF-mediated STAT5 activation and IL-4-induced STAT6 activation in a range of hematopoietic cells. This blockade of cytokine signaling by CCL11 results in reduced differentiation and endocytic ability of DCs, implicating CCL11-induced SOCS as mediators of chemotactic inflammatory control. These findings demonstrate cross-talk between chemokine and cytokine responses, suggesting that myeloid cells tracking to the inflammatory site do not differentiate in the presence of this chemokine, revealing another role for SOCS in inflammatory regulation. J. Leukoc. Biol. 85: 289-297; 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult neural stem cells (aNSCs) derived from the subventricular zone of the brain show therapeutic effects in EAE, an animal model of the chronic inflammatory neurodegenerative disease MS; however, the beneficial effects are modest. One critical weakness of aNSC therapy may be an insufficient antiinflammatory effect. Here, we demonstrate that i.v. or i.c.v. injection of aNSCs engineered to secrete IL-10 (IL-10–aNSCs), a potent immunoregulatory cytokine, induced more profound functional and pathological recovery from ongoing EAE than that with control aNSCs. IL-10–aNSCs exhibited enhanced antiinflammatory effects in the periphery and inflammatory foci in the CNS compared with control aNSCs, more effectively reducing myelin damage, a hallmark of MS. When compared with mice treated with control aNSCs, those treated with IL-10–aNSCs demonstrated differentiation of transplanted cells into greater numbers of oligodendrocytes and neurons but fewer astrocytes, thus enhancing exogenous remyelination and neuron/axonal growth. Finally, IL-10–aNSCs converted a hostile environment to one supportive of neurons/oligodendrocytes, thereby promoting endogenous remyelination. Thus, aNSCs engineered to express IL-10 show enhanced ability to induce immune suppression, remyelination, and neuronal repair and may represent a novel approach that can substantially improve the efficacy of neural stem cell–based therapy in EAE/MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart-of-palm (Euterpe edulis Mart.) is a wild palm with a wide distribution throughout the Atlantic Rainforest. Populations of E. edulis represent important renewable natural resources but are currently under threat from predatory exploitation. Furthermore, because the species is indigenous to the Atlantic Rainforest, which is located in the most economically developed and populated region of Brazil, social and economic pressures have devastated heart-of-palm forests. In order to estimate the partitioning of genetic variation of endangered E. edulis populations, 429 AFLP markers were used to analyse 150 plants representing 11 populations of the species distribution range. Analysis of the genetic structure of populations carried out using analysis of molecular variance (AMOVA) revealed moderate genetic variation within populations (57.4%). Genetic differentiation between populations (F-ST = 0.426) was positively correlated with geographical distance. These results could be explained by the historical fragmentation of the Atlantic coastal region, together with the life cycle and mating system The data obtained in this work should have important implications for conservation and future breeding programmes of E. edulis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Neuronal loss in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), correlates with permanent neurological dysfunction. Current MS therapies have limited the ability to prevent neuronal damage. Methods: We examined whether oral therapy with SRT501, a pharmaceutical grade formulation of resveratrol, reduces neuronal loss during relapsing-remitting EAE. Resveratrol activates SIRT1, an NAD-dependent deacetylase that promotes mitochondrial function. Results: Oral SRT501 prevented neuronal loss during optic neuritis, an inflammatory optic nerve lesion in MS and EAE. SRT501 also suppressed neurological dysfunction during EAE remission, and spinal cords from SRT501-treated mice had significantly higher axonal density than vehicle-treated mice. Similar neuroprotection was mediated by SRT1720, another SIRT1-activating compound; and sirtinol, an SIRT1 inhibitor, attenuated SRT501 neuroprotective effects. SIRT1 activators did not prevent inflammation. Conclusions: These studies demonstrate that SRT501 attenuates neuronal damage and neurological dysfunction in EAE by a mechanism involving SIRT1 activation. SIRT1 activators are a potential oral therapy in MS. © 2010 by North American Neuro-Ophthalmology Society.