10 resultados para neuronal differentiation

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Notch signaling pathway enables neighboring cells to coordinate developmental fates in diverse processes such as angiogenesis, neuronal differentiation, and immune system development. Although key components and interactions in the Notch pathway are known, it remains unclear how they work together to determine a cell's signaling state, defined as its quantitative ability to send and receive signals using particular Notch receptors and ligands. Recent work suggests that several aspects of the system can lead to complex signaling behaviors: First, receptors and ligands interact in two distinct ways, inhibiting each other in the same cell (in cis) while productively interacting between cells (in trans) to signal. The ability of a cell to send or receive signals depends strongly on both types of interactions. Second, mammals have multiple types of receptors and ligands, which interact with different strengths, and are frequently co-expressed in natural systems. Third, the three mammalian Fringe proteins can modify receptor-ligand interaction strengths in distinct and ligand-specific ways. Consequently, cells can exhibit non-intuitive signaling states even with relatively few components.

In order to understand what signaling states occur in natural processes, and what types of signaling behaviors they enable, this thesis puts forward a quantitative and predictive model of how the Notch signaling state is determined by the expression levels of receptors, ligands, and Fringe proteins. To specify the parameters of the model, we constructed a set of cell lines that allow control of ligand and Fringe expression level, and readout of the resulting Notch activity. We subjected these cell lines to an assay to quantitatively assess the levels of Notch ligands and receptors on the surface of individual cells. We further analyzed the dependence of these interactions on the level and type of Fringe expression. We developed a mathematical modeling framework that uses these data to predict the signaling states of individual cells from component expression levels. These methods allow us to reconstitute and analyze a diverse set of Notch signaling configurations from the bottom up, and provide a comprehensive view of the signaling repertoire of this major signaling pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neural crest is a group of migratory, multipotent stem cells that play a crucial role in many aspects of embryonic development. This uniquely vertebrate cell population forms within the dorsal neural tube but then emigrates out and migrates long distances to different regions of the body. These cells contribute to formation of many structures such as the peripheral nervous system, craniofacial skeleton, and pigmentation of the skin. Why some neural tube cells undergo a change from neural to neural crest cell fate is unknown as is the timing of both onset and cessation of their emigration from the neural tube. In recent years, growing evidence supports an important role for epigenetic regulation as a new mechanism for controlling aspects of neural crest development. In this thesis, I dissect the roles of the de novo DNA methyltransferases (DNMTs) 3A and 3B in neural crest specification, migration and differentiation. First, I show that DNMT3A limits the spatial boundary between neural crest versus neural tube progenitors within the neuroepithelium. DNMT3A promotes neural crest specification by directly mediating repression of neural genes, like Sox2 and Sox3. Its knockdown causes ectopic Sox2 and Sox3 expression at the expense of neural crest territory. Thus, DNMT3A functions as a molecular switch, repressing neural to favor neural crest cell fate. Second, I find that DNMT3B restricts the temporal window during which the neural crest cells emigrate from the dorsal neural tube. Knockdown of DNMT3B causes an excess of neural crest emigration, by extending the time that the neural tube is competent to generate emigrating neural crest cells. In older embryos, this resulted in premature neuronal differentiation. Thus, DNMT3B regulates the duration of neural crest production by the neural tube and the timing of their differentiation. My results in avian embryos suggest that de novo DNA methylation, exerted by both DNMT3A and DNMT3B, plays a dual role in neural crest development, with each individual paralogue apparently functioning during a distinct temporal window. The results suggest that de novo DNA methylation is a critical epigenetic mark used for cell fate restriction of progenitor cells during neural crest cell fate specification. Our discovery provides important insights into the mechanisms that determine whether a cell becomes part of the central nervous system or peripheral cell lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusible proteins regulate neural development at a variety of stages. Using a novel neuronal culture assay, I have identified several cytokines that regulate the expression of neurotransmitters and neuropeptides in sympathetic neurons. These cytokines fall into two families. The first group is termed the neuropoietic cytokines, while including CDF/LIF, CNTF, OSM and GPA, induces expression of the same set of neuropeptide mRNAs in cultured sympathetic neurons. These four factors not only exhibit similar biological activities; they also share a predicted secondary structure and bind to a signal-transducing receptor subunit in common with IL-6 and IL-11. The latter two cytokines display a weaker activity in this assay. In addition, I find that several members of the TGF-β superfamily, activin A, BMP-2, and BMP-6, have a selective overlap with the neuropoietic family in the spectrum of neuropeptides that these cytokines induce in sympathetic neurons. Different patterns of neuropeptides induced by the TGF-β family members, however, demonstrate that the activities of these cytokines are distinct from those of the neuropoietic family. Another 30 cytokines are without detectable effect in this neuronal assay.

Activin A induces a set of neurotransmitters and neuropeptides that is somewhat similar to the phenotype of sympathetic neurons innervating sweat glands in rat footpads. In situ hybridization and RNase protection were carried out to test whether activins were involved in the phenotypic transition when sympathetic neurons contact sweat glands. I find that activin mRNA is present in both cholinergic and noradrenergic targets. Moreover, homogenates of footpads do not contain activin-like activity in the neuronal assay in vitro. Taken together, these data do not support activins as the best candidates for the sweat gland factor.

Several novel factors that regulate neuropeptide expression exist in heart cell conditioned medium. I attempted to purify these factors in collaboration with Dr. Jane Talvenheimo. Our results suggest that these factors are sensitive to the storage conditions used. Several modifications of purification strategy are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C. elegans is a compact system of 302 neurons with identifiable and mapped connections that makes it ideal for systems analysis. This work is a demonstration of what I have been able to learn about the nature of state-specific modulation and reversibility during a state called lethargus, a sleep-like state in the worm. I begin with description about the nervous system of the worm, the nature of sleep in the worm, the questions about behavior and its apparent circuit properties, the tools available and used to manipulate the nervous system, and what I have been able to learn from these studies. I end with clues that the physiology helps to teach us about the dynamics of state specific modulation, what makes sleep so different from other states, and how we can use these measurements to understand which modulators, neurotransmitters, and channels can be used to create different dynamics in a simple model system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compound eye of Drosophila melanogaster begins to differentiate during the late third larval instar in the eye-antennal imaginal disc. A wave of morphogenesis crosses the disc from posterior to anterior, leaving behind precisely patterned clusters of photoreceptor cells and accessory cells that will constitute the adult ommatidia of the retina. By the analysis of genetically mosaic eyes, it appears that any cell in the eye disc can adopt the characteristics of any one of the different cell types found in the mature eye, including photoreceptor cells and non-neuronal accessory cells such as cone cells. Therefore, cells within the prospective retinal epithelium assume different fates presumably via information present in the environment. The sevenless^+ (sev^+) gene appears to play a role in the expression of one of the possible fates, since the mutant phenotype is the lack of one of the pattern elements, namely, photoreceptor cell R7. The sev^+ gene product had been shown to be required during development of the eye, and had also been shown in genetic mosaics to be autonomous to presumptive R7. As a means of better understanding the pathway instructing the differentiation R7, the gene and its protein product were characterized.

The sev+ gene was cloned by P-element transposon tagging, and was found to encode an 8.2 kb transcript expressed in developing eye discs and adult heads. By raising monoclonal antibodies (MAbs) against a sev^+- β-galactosidase fusion protein, the expression of the protein in the eye disc was localized by immuno-electronmicroscopy. The protein localizes to the apical cell membranes and microvilli of cells in the eye disc epithelium. It appears during development at a time coincident with the initial formation of clusters, and in all the developing photoreceptors and accessory cone cells at a time prior to the overt differentiation of R7. This result is consistent with the pluripotency of cells in the eye disc. Its localization in the membranes suggests that it may receive information directing the development of R7. Its localization in the apical membranes and microvilli is away from the bulk of the cell contacts, which have been cited as a likely regions for information presentation and processing. Biochemical characterization of the sev^+ protein will be necessary to describe further its role in development.

Other mutations in Drosophila have eye phenotypes. These were analyzed to find which ones affected the initial patterning of cells in the eye disc, in order to identify other genes, like sev, whose gene products may be involved in generating the pattern. The adult eye phenotypes ranged from severe reduction of the eye, to variable numbers of photoreceptor cells per ommatidium, to sub de defects in the organization of the supporting cells. Developing eye discs from the different strains were screened using a panel of MAbs, which highlight various developmental stages. Two identified matrix elements in and anterior to the furrow, while others identified the developing ommatidia themselves, like the anti-sev MAb. Mutation phenotypes were shown to appear at many stages of development. Some mutations seem to affect the precursor cells, others, the setting up of the pattern, and still others, the maintenance of the pattern. Thus, additional genes have now been identified that may function to support the development of a complex pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.

The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.

Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.

Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.

An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The changes in internal states, such as fear, hunger and sleep affect behavioral responses in animals. In most of the cases, these state-dependent influences are “pleiotropic”: one state affects multiple sensory modalities and behaviors; “scalable”: the strengths and choices of such modulations differ depending on the imminence of demands; and “persistent”: once the state is switched on the effects last even after the internal demands are off. These prominent features of state-control enable animals to adjust their behavioral responses depending on their internal demands. Here, we studied the neuronal mechanisms of state-controls by investigating energy-deprived state (hunger state) and social-deprived state of fruit flies, Drosophila melanogaster, as prototypic models. To approach these questions, we developed two novel methods: a genetically based method to map sites of neuromodulation in the brain and optogenetic tools in Drosophila.

These methods, and genetic perturbations, reveal that the effect of hunger to alter behavioral sensitivity to gustatory cues is mediate by two distinct neuromodulatory pathways. The neuropeptide F (NPF) – dopamine (DA) pathway increases sugar sensitivity under mild starvation, while the adipokinetic hormone (AKH)- short neuropeptide F (sNPF) pathway decreases bitter sensitivity under severe starvation. These two pathways are recruited under different levels of energy demands without any cross interaction. Effects of both of the pathways are mediated by modulation of the gustatory sensory neurons, which reinforce the concept that sensory neurons constitute an important locus for state-dependent control of behaviors. Our data suggests that multiple independent neuromodulatory pathways are underlying pleiotropic and scalable effects of the hunger state.

In addition, using optogenetic tool, we show that the neural control of male courtship song can be separated into probabilistic/biasing, and deterministic/command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, supporting the idea that they constitute a locus of state-dependent influence. Interestingly, moreover, brief activation of the former, but not the latter, neurons trigger persistent behavioral response for more than 10 min. Altogether, these findings and new tools described in this dissertation offer new entry points for future researchers to understand the neuronal mechanism of state control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FGF/Erk MAP Kinase Signaling is a central regulator of mouse embryonic stem cell (mESC) self-renewal, pluripotency and differentiation. However, the mechanistic connection between this signaling pathway activity and the gene circuits stabilizing mESCs in vitro remain unclear. Here we show that FGF signaling post-transcriptionally regulates the mESC transcription factor network by controlling the expression of Brf1 (zfp36l1), an AU-rich element mRNA binding protein. Changes in Brf1 level disrupts the expression of core pluripotency-associated genes and attenuates mESC self-renewal without inducing differentiation. These regulatory effects are mediated by rapid and direct destabilization of Brf1 targets, such as Nanog mRNA. Interestingly, enhancing Brf1 expression does not compromise mESC pluripotency, but does preferentially regulate differentiation to mesendoderm by accelerating the expression of primitive streak markers. Together, these studies demonstrate that FGF signals utilize targeted mRNA degradation by Brf1 to enable rapid post-transcriptional control of gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (nAChRs) are pentameric, ligand-gated, cation channels found throughout the central and peripheral nervous system, whose endogenous ligand is acetylcholine, but which can also be acted upon by nicotine. The subunit compositions of nAChR determine their physiological and pharmacological properties, with different subunits expressed in different combinations or areas throughout the brain. The behavioral and physiological effects of nicotine are elicited by its agonistic and desensitizing actions selectively on neuronal nAChRs. The midbrain is of particular interest due to its population of nAChRs expressed on dopaminergic neurons, which are important for reward and reinforcement, and possibly contribute to nicotine dependence. The α6-subunit is found on dopaminergic neurons but very few other regions of the brain, making it an interesting drug target. We assayed a novel nicotinic agonist, called TI-299423 or TC299, for its possible selectivity for α6-containing nAChRs. Our goal was to isolate the role of α6-containing nAChRs in nicotine reward and reinforcement, and provide insight into the search for more effective smoking cessation compounds. This was done using a variety of in vitro and behavioral assays, aimed dually at understanding TI-299423’s exact mechanism of action and its downstream effects. Additionally, we looked at the effects of another compound, menthol, on nicotine reward. Understanding how reward is generated in the cholinergic system and how that is modulated by other compounds contributes to a better understand of our complex neural circuitry and provides insight for the future development of therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors are pentameric ligand-gated ion channels mediating fast synaptic transmission throughout the peripheral and central nervous systems. They have been implicated in various processes related to cognitive functions, learning and memory, arousal, reward, motor control and analgesia. Therefore, these receptors present alluring potential therapeutic targets for the treatment of pain, epilepsy, Alzheimer’s disease, Parkinson’s disease, Tourette’s syndrome, schizophrenia, anxiety, depression and nicotine addiction. The work detailed in this thesis focuses on binding studies of neuronal nicotinic receptors and aims to further our knowledge of subtype specific functional and structural information.

Chapter 1 is an introductory chapter describing the structure and function of nicotinic acetylcholine receptors as well as the methodologies used for the dissertation work described herein. There are several different subtypes of nicotinic acetylcholine receptors known to date and the subtle variations in their structure and function present a challenging area of study. The work presented in this thesis deals specifically with the α4β2 subtype of nicotinic acetylcholine receptor. This subtype assembles into 2 closely related stoichiometries, termed throughout this thesis as A3B2 and A2B3 after their respective subunit composition. Chapter 2 describes binding studies of select nicotinic agonists on A3B2 and A2B3 receptors determined by whole-cell recording. Three key binding interactions, a cation-π and two hydrogen bonds, were probed for four nicotinic agonists, acetylcholine, nicotine, smoking cessation drug varenicline (Chantix®) and the related natural product cytisine.

Results from the binding studies presented in Chapter 2 show that the major difference in binding of these four agonists to A3B2 and A2B3 receptors lies in one of the two hydrogen bond interactions where the agonist acts as the hydrogen bond acceptor and the backbone NH of a conserved leucine residue in the receptor acts as the hydrogen bond donor. Chapter 3 focuses on studying the effect of modulating the hydrogen bond acceptor ability of nicotine and epibatidine on A3B2 receptor function determined by whole-cell recording. Finally, Chapter 4 describes single-channel recording studies of varenicline binding to A2B3 and A3B2 receptors.